Metamath Proof Explorer


Theorem bpoly0

Description: The value of the Bernoulli polynomials at zero. (Contributed by Scott Fenton, 16-May-2014)

Ref Expression
Assertion bpoly0 X 0 BernPoly X = 1

Proof

Step Hyp Ref Expression
1 0nn0 0 0
2 bpolyval 0 0 X 0 BernPoly X = X 0 k = 0 0 1 ( 0 k) k BernPoly X 0 - k + 1
3 1 2 mpan X 0 BernPoly X = X 0 k = 0 0 1 ( 0 k) k BernPoly X 0 - k + 1
4 exp0 X X 0 = 1
5 4 oveq1d X X 0 k = 0 0 1 ( 0 k) k BernPoly X 0 - k + 1 = 1 k = 0 0 1 ( 0 k) k BernPoly X 0 - k + 1
6 risefall0lem 0 0 1 =
7 6 sumeq1i k = 0 0 1 ( 0 k) k BernPoly X 0 - k + 1 = k ( 0 k) k BernPoly X 0 - k + 1
8 sum0 k ( 0 k) k BernPoly X 0 - k + 1 = 0
9 7 8 eqtri k = 0 0 1 ( 0 k) k BernPoly X 0 - k + 1 = 0
10 9 oveq2i 1 k = 0 0 1 ( 0 k) k BernPoly X 0 - k + 1 = 1 0
11 1m0e1 1 0 = 1
12 10 11 eqtri 1 k = 0 0 1 ( 0 k) k BernPoly X 0 - k + 1 = 1
13 5 12 eqtrdi X X 0 k = 0 0 1 ( 0 k) k BernPoly X 0 - k + 1 = 1
14 3 13 eqtrd X 0 BernPoly X = 1