| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1nn0 |
|
| 2 |
|
bpolyval |
|
| 3 |
1 2
|
mpan |
|
| 4 |
|
exp1 |
|
| 5 |
|
1m1e0 |
|
| 6 |
5
|
oveq2i |
|
| 7 |
6
|
sumeq1i |
|
| 8 |
|
0z |
|
| 9 |
|
bpoly0 |
|
| 10 |
9
|
oveq1d |
|
| 11 |
10
|
oveq2d |
|
| 12 |
|
halfcn |
|
| 13 |
12
|
mullidi |
|
| 14 |
11 13
|
eqtrdi |
|
| 15 |
14 12
|
eqeltrdi |
|
| 16 |
|
oveq2 |
|
| 17 |
|
bcn0 |
|
| 18 |
1 17
|
ax-mp |
|
| 19 |
16 18
|
eqtrdi |
|
| 20 |
|
oveq1 |
|
| 21 |
|
oveq2 |
|
| 22 |
|
1m0e1 |
|
| 23 |
21 22
|
eqtrdi |
|
| 24 |
23
|
oveq1d |
|
| 25 |
|
df-2 |
|
| 26 |
24 25
|
eqtr4di |
|
| 27 |
20 26
|
oveq12d |
|
| 28 |
19 27
|
oveq12d |
|
| 29 |
28
|
fsum1 |
|
| 30 |
8 15 29
|
sylancr |
|
| 31 |
30 14
|
eqtrd |
|
| 32 |
7 31
|
eqtrid |
|
| 33 |
4 32
|
oveq12d |
|
| 34 |
3 33
|
eqtrd |
|