Metamath Proof Explorer


Theorem bpoly1

Description: The value of the Bernoulli polynomials at one. (Contributed by Scott Fenton, 16-May-2014)

Ref Expression
Assertion bpoly1 X1BernPolyX=X12

Proof

Step Hyp Ref Expression
1 1nn0 10
2 bpolyval 10X1BernPolyX=X1k=011(1k)kBernPolyX1-k+1
3 1 2 mpan X1BernPolyX=X1k=011(1k)kBernPolyX1-k+1
4 exp1 XX1=X
5 1m1e0 11=0
6 5 oveq2i 011=00
7 6 sumeq1i k=011(1k)kBernPolyX1-k+1=k=00(1k)kBernPolyX1-k+1
8 0z 0
9 bpoly0 X0BernPolyX=1
10 9 oveq1d X0BernPolyX2=12
11 10 oveq2d X10BernPolyX2=112
12 halfcn 12
13 12 mullidi 112=12
14 11 13 eqtrdi X10BernPolyX2=12
15 14 12 eqeltrdi X10BernPolyX2
16 oveq2 k=0(1k)=(10)
17 bcn0 10(10)=1
18 1 17 ax-mp (10)=1
19 16 18 eqtrdi k=0(1k)=1
20 oveq1 k=0kBernPolyX=0BernPolyX
21 oveq2 k=01k=10
22 1m0e1 10=1
23 21 22 eqtrdi k=01k=1
24 23 oveq1d k=01-k+1=1+1
25 df-2 2=1+1
26 24 25 eqtr4di k=01-k+1=2
27 20 26 oveq12d k=0kBernPolyX1-k+1=0BernPolyX2
28 19 27 oveq12d k=0(1k)kBernPolyX1-k+1=10BernPolyX2
29 28 fsum1 010BernPolyX2k=00(1k)kBernPolyX1-k+1=10BernPolyX2
30 8 15 29 sylancr Xk=00(1k)kBernPolyX1-k+1=10BernPolyX2
31 30 14 eqtrd Xk=00(1k)kBernPolyX1-k+1=12
32 7 31 eqtrid Xk=011(1k)kBernPolyX1-k+1=12
33 4 32 oveq12d XX1k=011(1k)kBernPolyX1-k+1=X12
34 3 33 eqtrd X1BernPolyX=X12