Metamath Proof Explorer


Theorem bpoly1

Description: The value of the Bernoulli polynomials at one. (Contributed by Scott Fenton, 16-May-2014)

Ref Expression
Assertion bpoly1 X 1 BernPoly X = X 1 2

Proof

Step Hyp Ref Expression
1 1nn0 1 0
2 bpolyval 1 0 X 1 BernPoly X = X 1 k = 0 1 1 ( 1 k) k BernPoly X 1 - k + 1
3 1 2 mpan X 1 BernPoly X = X 1 k = 0 1 1 ( 1 k) k BernPoly X 1 - k + 1
4 exp1 X X 1 = X
5 1m1e0 1 1 = 0
6 5 oveq2i 0 1 1 = 0 0
7 6 sumeq1i k = 0 1 1 ( 1 k) k BernPoly X 1 - k + 1 = k = 0 0 ( 1 k) k BernPoly X 1 - k + 1
8 0z 0
9 bpoly0 X 0 BernPoly X = 1
10 9 oveq1d X 0 BernPoly X 2 = 1 2
11 10 oveq2d X 1 0 BernPoly X 2 = 1 1 2
12 halfcn 1 2
13 12 mulid2i 1 1 2 = 1 2
14 11 13 eqtrdi X 1 0 BernPoly X 2 = 1 2
15 14 12 eqeltrdi X 1 0 BernPoly X 2
16 oveq2 k = 0 ( 1 k) = ( 1 0 )
17 bcn0 1 0 ( 1 0 ) = 1
18 1 17 ax-mp ( 1 0 ) = 1
19 16 18 eqtrdi k = 0 ( 1 k) = 1
20 oveq1 k = 0 k BernPoly X = 0 BernPoly X
21 oveq2 k = 0 1 k = 1 0
22 1m0e1 1 0 = 1
23 21 22 eqtrdi k = 0 1 k = 1
24 23 oveq1d k = 0 1 - k + 1 = 1 + 1
25 df-2 2 = 1 + 1
26 24 25 eqtr4di k = 0 1 - k + 1 = 2
27 20 26 oveq12d k = 0 k BernPoly X 1 - k + 1 = 0 BernPoly X 2
28 19 27 oveq12d k = 0 ( 1 k) k BernPoly X 1 - k + 1 = 1 0 BernPoly X 2
29 28 fsum1 0 1 0 BernPoly X 2 k = 0 0 ( 1 k) k BernPoly X 1 - k + 1 = 1 0 BernPoly X 2
30 8 15 29 sylancr X k = 0 0 ( 1 k) k BernPoly X 1 - k + 1 = 1 0 BernPoly X 2
31 30 14 eqtrd X k = 0 0 ( 1 k) k BernPoly X 1 - k + 1 = 1 2
32 7 31 syl5eq X k = 0 1 1 ( 1 k) k BernPoly X 1 - k + 1 = 1 2
33 4 32 oveq12d X X 1 k = 0 1 1 ( 1 k) k BernPoly X 1 - k + 1 = X 1 2
34 3 33 eqtrd X 1 BernPoly X = X 1 2