| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|
| 2 |
1
|
eleq1d |
|
| 3 |
2
|
imbi2d |
|
| 4 |
|
oveq1 |
|
| 5 |
4
|
eleq1d |
|
| 6 |
5
|
imbi2d |
|
| 7 |
|
r19.21v |
|
| 8 |
|
bpolyval |
|
| 9 |
8
|
3adant3 |
|
| 10 |
|
simp2 |
|
| 11 |
|
simp1 |
|
| 12 |
10 11
|
expcld |
|
| 13 |
|
fzfid |
|
| 14 |
|
elfzelz |
|
| 15 |
|
bccl |
|
| 16 |
11 14 15
|
syl2an |
|
| 17 |
16
|
nn0cnd |
|
| 18 |
|
oveq1 |
|
| 19 |
18
|
eleq1d |
|
| 20 |
19
|
rspccva |
|
| 21 |
20
|
3ad2antl3 |
|
| 22 |
|
fzssp1 |
|
| 23 |
11
|
nn0cnd |
|
| 24 |
|
ax-1cn |
|
| 25 |
|
npcan |
|
| 26 |
23 24 25
|
sylancl |
|
| 27 |
26
|
oveq2d |
|
| 28 |
22 27
|
sseqtrid |
|
| 29 |
28
|
sselda |
|
| 30 |
|
fznn0sub |
|
| 31 |
|
nn0p1nn |
|
| 32 |
29 30 31
|
3syl |
|
| 33 |
32
|
nncnd |
|
| 34 |
32
|
nnne0d |
|
| 35 |
21 33 34
|
divcld |
|
| 36 |
17 35
|
mulcld |
|
| 37 |
13 36
|
fsumcl |
|
| 38 |
12 37
|
subcld |
|
| 39 |
9 38
|
eqeltrd |
|
| 40 |
39
|
3exp |
|
| 41 |
40
|
a2d |
|
| 42 |
7 41
|
biimtrid |
|
| 43 |
3 6 42
|
nn0sinds |
|
| 44 |
43
|
imp |
|