Metamath Proof Explorer


Definition df-bpoly

Description: Define the Bernoulli polynomials. Here we use well-founded recursion to define the Bernoulli polynomials. This agrees with most textbook definitions, although explicit formulas do exist. (Contributed by Scott Fenton, 22-May-2014)

Ref Expression
Assertion df-bpoly BernPoly=m0,xwrecs<0gVdomg/nxnkdomg(nk)gkn-k+1m

Detailed syntax breakdown

Step Hyp Ref Expression
0 cbp classBernPoly
1 vm setvarm
2 cn0 class0
3 vx setvarx
4 cc class
5 clt class<
6 vg setvarg
7 cvv classV
8 chash class.
9 6 cv setvarg
10 9 cdm classdomg
11 10 8 cfv classdomg
12 vn setvarn
13 3 cv setvarx
14 cexp class^
15 12 cv setvarn
16 13 15 14 co classxn
17 cmin class
18 vk setvark
19 cbc class(..)
20 18 cv setvark
21 15 20 19 co class(nk)
22 cmul class×
23 20 9 cfv classgk
24 cdiv class÷
25 15 20 17 co classnk
26 caddc class+
27 c1 class1
28 25 27 26 co classn-k+1
29 23 28 24 co classgkn-k+1
30 21 29 22 co class(nk)gkn-k+1
31 10 30 18 csu classkdomg(nk)gkn-k+1
32 16 31 17 co classxnkdomg(nk)gkn-k+1
33 12 11 32 csb classdomg/nxnkdomg(nk)gkn-k+1
34 6 7 33 cmpt classgVdomg/nxnkdomg(nk)gkn-k+1
35 2 5 34 cwrecs classwrecs<0gVdomg/nxnkdomg(nk)gkn-k+1
36 1 cv setvarm
37 36 35 cfv classwrecs<0gVdomg/nxnkdomg(nk)gkn-k+1m
38 1 3 2 4 37 cmpo classm0,xwrecs<0gVdomg/nxnkdomg(nk)gkn-k+1m
39 0 38 wceq wffBernPoly=m0,xwrecs<0gVdomg/nxnkdomg(nk)gkn-k+1m