Description: Define the Bernoulli polynomials. Here we use well-founded recursion to define the Bernoulli polynomials. This agrees with most textbook definitions, although explicit formulas do exist. (Contributed by Scott Fenton, 22-May-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-bpoly | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cbp | |
|
1 | vm | |
|
2 | cn0 | |
|
3 | vx | |
|
4 | cc | |
|
5 | clt | |
|
6 | vg | |
|
7 | cvv | |
|
8 | chash | |
|
9 | 6 | cv | |
10 | 9 | cdm | |
11 | 10 8 | cfv | |
12 | vn | |
|
13 | 3 | cv | |
14 | cexp | |
|
15 | 12 | cv | |
16 | 13 15 14 | co | |
17 | cmin | |
|
18 | vk | |
|
19 | cbc | |
|
20 | 18 | cv | |
21 | 15 20 19 | co | |
22 | cmul | |
|
23 | 20 9 | cfv | |
24 | cdiv | |
|
25 | 15 20 17 | co | |
26 | caddc | |
|
27 | c1 | |
|
28 | 25 27 26 | co | |
29 | 23 28 24 | co | |
30 | 21 29 22 | co | |
31 | 10 30 18 | csu | |
32 | 16 31 17 | co | |
33 | 12 11 32 | csb | |
34 | 6 7 33 | cmpt | |
35 | 2 5 34 | cwrecs | |
36 | 1 | cv | |
37 | 36 35 | cfv | |
38 | 1 3 2 4 37 | cmpo | |
39 | 0 38 | wceq | |