| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfs.s |
|- S = dom ( A CNF B ) |
| 2 |
|
cantnfs.a |
|- ( ph -> A e. On ) |
| 3 |
|
cantnfs.b |
|- ( ph -> B e. On ) |
| 4 |
|
cantnfcl.g |
|- G = OrdIso ( _E , ( F supp (/) ) ) |
| 5 |
|
cantnfcl.f |
|- ( ph -> F e. S ) |
| 6 |
|
cantnfval.h |
|- H = seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) +o z ) ) , (/) ) |
| 7 |
6
|
seqomsuc |
|- ( K e. _om -> ( H ` suc K ) = ( K ( k e. _V , z e. _V |-> ( ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) +o z ) ) ( H ` K ) ) ) |
| 8 |
7
|
adantl |
|- ( ( ph /\ K e. _om ) -> ( H ` suc K ) = ( K ( k e. _V , z e. _V |-> ( ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) +o z ) ) ( H ` K ) ) ) |
| 9 |
|
elex |
|- ( K e. _om -> K e. _V ) |
| 10 |
9
|
adantl |
|- ( ( ph /\ K e. _om ) -> K e. _V ) |
| 11 |
|
fvex |
|- ( H ` K ) e. _V |
| 12 |
|
simpl |
|- ( ( u = K /\ v = ( H ` K ) ) -> u = K ) |
| 13 |
12
|
fveq2d |
|- ( ( u = K /\ v = ( H ` K ) ) -> ( G ` u ) = ( G ` K ) ) |
| 14 |
13
|
oveq2d |
|- ( ( u = K /\ v = ( H ` K ) ) -> ( A ^o ( G ` u ) ) = ( A ^o ( G ` K ) ) ) |
| 15 |
13
|
fveq2d |
|- ( ( u = K /\ v = ( H ` K ) ) -> ( F ` ( G ` u ) ) = ( F ` ( G ` K ) ) ) |
| 16 |
14 15
|
oveq12d |
|- ( ( u = K /\ v = ( H ` K ) ) -> ( ( A ^o ( G ` u ) ) .o ( F ` ( G ` u ) ) ) = ( ( A ^o ( G ` K ) ) .o ( F ` ( G ` K ) ) ) ) |
| 17 |
|
simpr |
|- ( ( u = K /\ v = ( H ` K ) ) -> v = ( H ` K ) ) |
| 18 |
16 17
|
oveq12d |
|- ( ( u = K /\ v = ( H ` K ) ) -> ( ( ( A ^o ( G ` u ) ) .o ( F ` ( G ` u ) ) ) +o v ) = ( ( ( A ^o ( G ` K ) ) .o ( F ` ( G ` K ) ) ) +o ( H ` K ) ) ) |
| 19 |
|
fveq2 |
|- ( k = u -> ( G ` k ) = ( G ` u ) ) |
| 20 |
19
|
oveq2d |
|- ( k = u -> ( A ^o ( G ` k ) ) = ( A ^o ( G ` u ) ) ) |
| 21 |
19
|
fveq2d |
|- ( k = u -> ( F ` ( G ` k ) ) = ( F ` ( G ` u ) ) ) |
| 22 |
20 21
|
oveq12d |
|- ( k = u -> ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) = ( ( A ^o ( G ` u ) ) .o ( F ` ( G ` u ) ) ) ) |
| 23 |
22
|
oveq1d |
|- ( k = u -> ( ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) +o z ) = ( ( ( A ^o ( G ` u ) ) .o ( F ` ( G ` u ) ) ) +o z ) ) |
| 24 |
|
oveq2 |
|- ( z = v -> ( ( ( A ^o ( G ` u ) ) .o ( F ` ( G ` u ) ) ) +o z ) = ( ( ( A ^o ( G ` u ) ) .o ( F ` ( G ` u ) ) ) +o v ) ) |
| 25 |
23 24
|
cbvmpov |
|- ( k e. _V , z e. _V |-> ( ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) +o z ) ) = ( u e. _V , v e. _V |-> ( ( ( A ^o ( G ` u ) ) .o ( F ` ( G ` u ) ) ) +o v ) ) |
| 26 |
|
ovex |
|- ( ( ( A ^o ( G ` K ) ) .o ( F ` ( G ` K ) ) ) +o ( H ` K ) ) e. _V |
| 27 |
18 25 26
|
ovmpoa |
|- ( ( K e. _V /\ ( H ` K ) e. _V ) -> ( K ( k e. _V , z e. _V |-> ( ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) +o z ) ) ( H ` K ) ) = ( ( ( A ^o ( G ` K ) ) .o ( F ` ( G ` K ) ) ) +o ( H ` K ) ) ) |
| 28 |
10 11 27
|
sylancl |
|- ( ( ph /\ K e. _om ) -> ( K ( k e. _V , z e. _V |-> ( ( ( A ^o ( G ` k ) ) .o ( F ` ( G ` k ) ) ) +o z ) ) ( H ` K ) ) = ( ( ( A ^o ( G ` K ) ) .o ( F ` ( G ` K ) ) ) +o ( H ` K ) ) ) |
| 29 |
8 28
|
eqtrd |
|- ( ( ph /\ K e. _om ) -> ( H ` suc K ) = ( ( ( A ^o ( G ` K ) ) .o ( F ` ( G ` K ) ) ) +o ( H ` K ) ) ) |