Metamath Proof Explorer


Theorem cantnfsuc

Description: The value of the recursive function H at a successor. (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)

Ref Expression
Hypotheses cantnfs.s S=domACNFB
cantnfs.a φAOn
cantnfs.b φBOn
cantnfcl.g G=OrdIsoEFsupp
cantnfcl.f φFS
cantnfval.h H=seqωkV,zVA𝑜Gk𝑜FGk+𝑜z
Assertion cantnfsuc φKωHsucK=A𝑜GK𝑜FGK+𝑜HK

Proof

Step Hyp Ref Expression
1 cantnfs.s S=domACNFB
2 cantnfs.a φAOn
3 cantnfs.b φBOn
4 cantnfcl.g G=OrdIsoEFsupp
5 cantnfcl.f φFS
6 cantnfval.h H=seqωkV,zVA𝑜Gk𝑜FGk+𝑜z
7 6 seqomsuc KωHsucK=KkV,zVA𝑜Gk𝑜FGk+𝑜zHK
8 7 adantl φKωHsucK=KkV,zVA𝑜Gk𝑜FGk+𝑜zHK
9 elex KωKV
10 9 adantl φKωKV
11 fvex HKV
12 simpl u=Kv=HKu=K
13 12 fveq2d u=Kv=HKGu=GK
14 13 oveq2d u=Kv=HKA𝑜Gu=A𝑜GK
15 13 fveq2d u=Kv=HKFGu=FGK
16 14 15 oveq12d u=Kv=HKA𝑜Gu𝑜FGu=A𝑜GK𝑜FGK
17 simpr u=Kv=HKv=HK
18 16 17 oveq12d u=Kv=HKA𝑜Gu𝑜FGu+𝑜v=A𝑜GK𝑜FGK+𝑜HK
19 fveq2 k=uGk=Gu
20 19 oveq2d k=uA𝑜Gk=A𝑜Gu
21 19 fveq2d k=uFGk=FGu
22 20 21 oveq12d k=uA𝑜Gk𝑜FGk=A𝑜Gu𝑜FGu
23 22 oveq1d k=uA𝑜Gk𝑜FGk+𝑜z=A𝑜Gu𝑜FGu+𝑜z
24 oveq2 z=vA𝑜Gu𝑜FGu+𝑜z=A𝑜Gu𝑜FGu+𝑜v
25 23 24 cbvmpov kV,zVA𝑜Gk𝑜FGk+𝑜z=uV,vVA𝑜Gu𝑜FGu+𝑜v
26 ovex A𝑜GK𝑜FGK+𝑜HKV
27 18 25 26 ovmpoa KVHKVKkV,zVA𝑜Gk𝑜FGk+𝑜zHK=A𝑜GK𝑜FGK+𝑜HK
28 10 11 27 sylancl φKωKkV,zVA𝑜Gk𝑜FGk+𝑜zHK=A𝑜GK𝑜FGK+𝑜HK
29 8 28 eqtrd φKωHsucK=A𝑜GK𝑜FGK+𝑜HK