| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caovdig.1 |
|- ( ( ph /\ ( x e. K /\ y e. S /\ z e. S ) ) -> ( x G ( y F z ) ) = ( ( x G y ) H ( x G z ) ) ) |
| 2 |
1
|
ralrimivvva |
|- ( ph -> A. x e. K A. y e. S A. z e. S ( x G ( y F z ) ) = ( ( x G y ) H ( x G z ) ) ) |
| 3 |
|
oveq1 |
|- ( x = A -> ( x G ( y F z ) ) = ( A G ( y F z ) ) ) |
| 4 |
|
oveq1 |
|- ( x = A -> ( x G y ) = ( A G y ) ) |
| 5 |
|
oveq1 |
|- ( x = A -> ( x G z ) = ( A G z ) ) |
| 6 |
4 5
|
oveq12d |
|- ( x = A -> ( ( x G y ) H ( x G z ) ) = ( ( A G y ) H ( A G z ) ) ) |
| 7 |
3 6
|
eqeq12d |
|- ( x = A -> ( ( x G ( y F z ) ) = ( ( x G y ) H ( x G z ) ) <-> ( A G ( y F z ) ) = ( ( A G y ) H ( A G z ) ) ) ) |
| 8 |
|
oveq1 |
|- ( y = B -> ( y F z ) = ( B F z ) ) |
| 9 |
8
|
oveq2d |
|- ( y = B -> ( A G ( y F z ) ) = ( A G ( B F z ) ) ) |
| 10 |
|
oveq2 |
|- ( y = B -> ( A G y ) = ( A G B ) ) |
| 11 |
10
|
oveq1d |
|- ( y = B -> ( ( A G y ) H ( A G z ) ) = ( ( A G B ) H ( A G z ) ) ) |
| 12 |
9 11
|
eqeq12d |
|- ( y = B -> ( ( A G ( y F z ) ) = ( ( A G y ) H ( A G z ) ) <-> ( A G ( B F z ) ) = ( ( A G B ) H ( A G z ) ) ) ) |
| 13 |
|
oveq2 |
|- ( z = C -> ( B F z ) = ( B F C ) ) |
| 14 |
13
|
oveq2d |
|- ( z = C -> ( A G ( B F z ) ) = ( A G ( B F C ) ) ) |
| 15 |
|
oveq2 |
|- ( z = C -> ( A G z ) = ( A G C ) ) |
| 16 |
15
|
oveq2d |
|- ( z = C -> ( ( A G B ) H ( A G z ) ) = ( ( A G B ) H ( A G C ) ) ) |
| 17 |
14 16
|
eqeq12d |
|- ( z = C -> ( ( A G ( B F z ) ) = ( ( A G B ) H ( A G z ) ) <-> ( A G ( B F C ) ) = ( ( A G B ) H ( A G C ) ) ) ) |
| 18 |
7 12 17
|
rspc3v |
|- ( ( A e. K /\ B e. S /\ C e. S ) -> ( A. x e. K A. y e. S A. z e. S ( x G ( y F z ) ) = ( ( x G y ) H ( x G z ) ) -> ( A G ( B F C ) ) = ( ( A G B ) H ( A G C ) ) ) ) |
| 19 |
2 18
|
mpan9 |
|- ( ( ph /\ ( A e. K /\ B e. S /\ C e. S ) ) -> ( A G ( B F C ) ) = ( ( A G B ) H ( A G C ) ) ) |