| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cbvmptfg.1 |  |-  F/_ x A | 
						
							| 2 |  | cbvmptfg.2 |  |-  F/_ y A | 
						
							| 3 |  | cbvmptfg.3 |  |-  F/_ y B | 
						
							| 4 |  | cbvmptfg.4 |  |-  F/_ x C | 
						
							| 5 |  | cbvmptfg.5 |  |-  ( x = y -> B = C ) | 
						
							| 6 |  | nfv |  |-  F/ w ( x e. A /\ z = B ) | 
						
							| 7 | 1 | nfcri |  |-  F/ x w e. A | 
						
							| 8 |  | nfs1v |  |-  F/ x [ w / x ] z = B | 
						
							| 9 | 7 8 | nfan |  |-  F/ x ( w e. A /\ [ w / x ] z = B ) | 
						
							| 10 |  | eleq1w |  |-  ( x = w -> ( x e. A <-> w e. A ) ) | 
						
							| 11 |  | sbequ12 |  |-  ( x = w -> ( z = B <-> [ w / x ] z = B ) ) | 
						
							| 12 | 10 11 | anbi12d |  |-  ( x = w -> ( ( x e. A /\ z = B ) <-> ( w e. A /\ [ w / x ] z = B ) ) ) | 
						
							| 13 | 6 9 12 | cbvopab1g |  |-  { <. x , z >. | ( x e. A /\ z = B ) } = { <. w , z >. | ( w e. A /\ [ w / x ] z = B ) } | 
						
							| 14 | 2 | nfcri |  |-  F/ y w e. A | 
						
							| 15 | 3 | nfeq2 |  |-  F/ y z = B | 
						
							| 16 | 15 | nfsb |  |-  F/ y [ w / x ] z = B | 
						
							| 17 | 14 16 | nfan |  |-  F/ y ( w e. A /\ [ w / x ] z = B ) | 
						
							| 18 |  | nfv |  |-  F/ w ( y e. A /\ z = C ) | 
						
							| 19 |  | eleq1w |  |-  ( w = y -> ( w e. A <-> y e. A ) ) | 
						
							| 20 |  | sbequ |  |-  ( w = y -> ( [ w / x ] z = B <-> [ y / x ] z = B ) ) | 
						
							| 21 | 4 | nfeq2 |  |-  F/ x z = C | 
						
							| 22 | 5 | eqeq2d |  |-  ( x = y -> ( z = B <-> z = C ) ) | 
						
							| 23 | 21 22 | sbie |  |-  ( [ y / x ] z = B <-> z = C ) | 
						
							| 24 | 20 23 | bitrdi |  |-  ( w = y -> ( [ w / x ] z = B <-> z = C ) ) | 
						
							| 25 | 19 24 | anbi12d |  |-  ( w = y -> ( ( w e. A /\ [ w / x ] z = B ) <-> ( y e. A /\ z = C ) ) ) | 
						
							| 26 | 17 18 25 | cbvopab1g |  |-  { <. w , z >. | ( w e. A /\ [ w / x ] z = B ) } = { <. y , z >. | ( y e. A /\ z = C ) } | 
						
							| 27 | 13 26 | eqtri |  |-  { <. x , z >. | ( x e. A /\ z = B ) } = { <. y , z >. | ( y e. A /\ z = C ) } | 
						
							| 28 |  | df-mpt |  |-  ( x e. A |-> B ) = { <. x , z >. | ( x e. A /\ z = B ) } | 
						
							| 29 |  | df-mpt |  |-  ( y e. A |-> C ) = { <. y , z >. | ( y e. A /\ z = C ) } | 
						
							| 30 | 27 28 29 | 3eqtr4i |  |-  ( x e. A |-> B ) = ( y e. A |-> C ) |