Metamath Proof Explorer


Theorem cbvmptfg

Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . See cbvmptf for a version with more disjoint variable conditions, but not requiring ax-13 . (Contributed by NM, 11-Sep-2011) (Revised by Thierry Arnoux, 9-Mar-2017) (New usage is discouraged.)

Ref Expression
Hypotheses cbvmptfg.1 _xA
cbvmptfg.2 _yA
cbvmptfg.3 _yB
cbvmptfg.4 _xC
cbvmptfg.5 x=yB=C
Assertion cbvmptfg xAB=yAC

Proof

Step Hyp Ref Expression
1 cbvmptfg.1 _xA
2 cbvmptfg.2 _yA
3 cbvmptfg.3 _yB
4 cbvmptfg.4 _xC
5 cbvmptfg.5 x=yB=C
6 nfv wxAz=B
7 1 nfcri xwA
8 nfs1v xwxz=B
9 7 8 nfan xwAwxz=B
10 eleq1w x=wxAwA
11 sbequ12 x=wz=Bwxz=B
12 10 11 anbi12d x=wxAz=BwAwxz=B
13 6 9 12 cbvopab1g xz|xAz=B=wz|wAwxz=B
14 2 nfcri ywA
15 3 nfeq2 yz=B
16 15 nfsb ywxz=B
17 14 16 nfan ywAwxz=B
18 nfv wyAz=C
19 eleq1w w=ywAyA
20 sbequ w=ywxz=Byxz=B
21 4 nfeq2 xz=C
22 5 eqeq2d x=yz=Bz=C
23 21 22 sbie yxz=Bz=C
24 20 23 bitrdi w=ywxz=Bz=C
25 19 24 anbi12d w=ywAwxz=ByAz=C
26 17 18 25 cbvopab1g wz|wAwxz=B=yz|yAz=C
27 13 26 eqtri xz|xAz=B=yz|yAz=C
28 df-mpt xAB=xz|xAz=B
29 df-mpt yAC=yz|yAz=C
30 27 28 29 3eqtr4i xAB=yAC