| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cbvmptfg.1 | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 2 |  | cbvmptfg.2 | ⊢ Ⅎ 𝑦 𝐴 | 
						
							| 3 |  | cbvmptfg.3 | ⊢ Ⅎ 𝑦 𝐵 | 
						
							| 4 |  | cbvmptfg.4 | ⊢ Ⅎ 𝑥 𝐶 | 
						
							| 5 |  | cbvmptfg.5 | ⊢ ( 𝑥  =  𝑦  →  𝐵  =  𝐶 ) | 
						
							| 6 |  | nfv | ⊢ Ⅎ 𝑤 ( 𝑥  ∈  𝐴  ∧  𝑧  =  𝐵 ) | 
						
							| 7 | 1 | nfcri | ⊢ Ⅎ 𝑥 𝑤  ∈  𝐴 | 
						
							| 8 |  | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑤  /  𝑥 ] 𝑧  =  𝐵 | 
						
							| 9 | 7 8 | nfan | ⊢ Ⅎ 𝑥 ( 𝑤  ∈  𝐴  ∧  [ 𝑤  /  𝑥 ] 𝑧  =  𝐵 ) | 
						
							| 10 |  | eleq1w | ⊢ ( 𝑥  =  𝑤  →  ( 𝑥  ∈  𝐴  ↔  𝑤  ∈  𝐴 ) ) | 
						
							| 11 |  | sbequ12 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑧  =  𝐵  ↔  [ 𝑤  /  𝑥 ] 𝑧  =  𝐵 ) ) | 
						
							| 12 | 10 11 | anbi12d | ⊢ ( 𝑥  =  𝑤  →  ( ( 𝑥  ∈  𝐴  ∧  𝑧  =  𝐵 )  ↔  ( 𝑤  ∈  𝐴  ∧  [ 𝑤  /  𝑥 ] 𝑧  =  𝐵 ) ) ) | 
						
							| 13 | 6 9 12 | cbvopab1g | ⊢ { 〈 𝑥 ,  𝑧 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑧  =  𝐵 ) }  =  { 〈 𝑤 ,  𝑧 〉  ∣  ( 𝑤  ∈  𝐴  ∧  [ 𝑤  /  𝑥 ] 𝑧  =  𝐵 ) } | 
						
							| 14 | 2 | nfcri | ⊢ Ⅎ 𝑦 𝑤  ∈  𝐴 | 
						
							| 15 | 3 | nfeq2 | ⊢ Ⅎ 𝑦 𝑧  =  𝐵 | 
						
							| 16 | 15 | nfsb | ⊢ Ⅎ 𝑦 [ 𝑤  /  𝑥 ] 𝑧  =  𝐵 | 
						
							| 17 | 14 16 | nfan | ⊢ Ⅎ 𝑦 ( 𝑤  ∈  𝐴  ∧  [ 𝑤  /  𝑥 ] 𝑧  =  𝐵 ) | 
						
							| 18 |  | nfv | ⊢ Ⅎ 𝑤 ( 𝑦  ∈  𝐴  ∧  𝑧  =  𝐶 ) | 
						
							| 19 |  | eleq1w | ⊢ ( 𝑤  =  𝑦  →  ( 𝑤  ∈  𝐴  ↔  𝑦  ∈  𝐴 ) ) | 
						
							| 20 |  | sbequ | ⊢ ( 𝑤  =  𝑦  →  ( [ 𝑤  /  𝑥 ] 𝑧  =  𝐵  ↔  [ 𝑦  /  𝑥 ] 𝑧  =  𝐵 ) ) | 
						
							| 21 | 4 | nfeq2 | ⊢ Ⅎ 𝑥 𝑧  =  𝐶 | 
						
							| 22 | 5 | eqeq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝑧  =  𝐵  ↔  𝑧  =  𝐶 ) ) | 
						
							| 23 | 21 22 | sbie | ⊢ ( [ 𝑦  /  𝑥 ] 𝑧  =  𝐵  ↔  𝑧  =  𝐶 ) | 
						
							| 24 | 20 23 | bitrdi | ⊢ ( 𝑤  =  𝑦  →  ( [ 𝑤  /  𝑥 ] 𝑧  =  𝐵  ↔  𝑧  =  𝐶 ) ) | 
						
							| 25 | 19 24 | anbi12d | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝑤  ∈  𝐴  ∧  [ 𝑤  /  𝑥 ] 𝑧  =  𝐵 )  ↔  ( 𝑦  ∈  𝐴  ∧  𝑧  =  𝐶 ) ) ) | 
						
							| 26 | 17 18 25 | cbvopab1g | ⊢ { 〈 𝑤 ,  𝑧 〉  ∣  ( 𝑤  ∈  𝐴  ∧  [ 𝑤  /  𝑥 ] 𝑧  =  𝐵 ) }  =  { 〈 𝑦 ,  𝑧 〉  ∣  ( 𝑦  ∈  𝐴  ∧  𝑧  =  𝐶 ) } | 
						
							| 27 | 13 26 | eqtri | ⊢ { 〈 𝑥 ,  𝑧 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑧  =  𝐵 ) }  =  { 〈 𝑦 ,  𝑧 〉  ∣  ( 𝑦  ∈  𝐴  ∧  𝑧  =  𝐶 ) } | 
						
							| 28 |  | df-mpt | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  { 〈 𝑥 ,  𝑧 〉  ∣  ( 𝑥  ∈  𝐴  ∧  𝑧  =  𝐵 ) } | 
						
							| 29 |  | df-mpt | ⊢ ( 𝑦  ∈  𝐴  ↦  𝐶 )  =  { 〈 𝑦 ,  𝑧 〉  ∣  ( 𝑦  ∈  𝐴  ∧  𝑧  =  𝐶 ) } | 
						
							| 30 | 27 28 29 | 3eqtr4i | ⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑦  ∈  𝐴  ↦  𝐶 ) |