Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme17.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme17.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme17.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme17.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme17.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme17.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
|
cdleme17.f |
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
8 |
|
cdleme17.g |
|- G = ( ( P .\/ Q ) ./\ ( F .\/ ( ( P .\/ S ) ./\ W ) ) ) |
9 |
|
eqid |
|- ( ( P .\/ S ) ./\ W ) = ( ( P .\/ S ) ./\ W ) |
10 |
1 2 3 4 5 6 7 8 9
|
cdleme17a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> G = ( ( P .\/ Q ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) ) |
11 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> K e. HL ) |
12 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> W e. H ) |
13 |
|
simp21l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> P e. A ) |
14 |
|
simp21r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> -. P .<_ W ) |
15 |
|
simp22 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> Q e. A ) |
16 |
|
simp23l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> S e. A ) |
17 |
|
simp3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> -. S .<_ ( P .\/ Q ) ) |
18 |
1 2 3 4 5 6 7 8 9
|
cdleme17c |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ S e. A /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ Q ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) = Q ) |
19 |
11 12 13 14 15 16 17 18
|
syl223anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> ( ( P .\/ Q ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) = Q ) |
20 |
10 19
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> G = Q ) |