Metamath Proof Explorer


Theorem cdleme17d1

Description: Part of proof of Lemma E in Crawley p. 114, first part of 4th paragraph. F , G represent f(s), f_s(p) respectively. We show, in their notation, f_s(p)=q. (Contributed by NM, 11-Oct-2012)

Ref Expression
Hypotheses cdleme17.l ˙=K
cdleme17.j ˙=joinK
cdleme17.m ˙=meetK
cdleme17.a A=AtomsK
cdleme17.h H=LHypK
cdleme17.u U=P˙Q˙W
cdleme17.f F=S˙U˙Q˙P˙S˙W
cdleme17.g G=P˙Q˙F˙P˙S˙W
Assertion cdleme17d1 KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QG=Q

Proof

Step Hyp Ref Expression
1 cdleme17.l ˙=K
2 cdleme17.j ˙=joinK
3 cdleme17.m ˙=meetK
4 cdleme17.a A=AtomsK
5 cdleme17.h H=LHypK
6 cdleme17.u U=P˙Q˙W
7 cdleme17.f F=S˙U˙Q˙P˙S˙W
8 cdleme17.g G=P˙Q˙F˙P˙S˙W
9 eqid P˙S˙W=P˙S˙W
10 1 2 3 4 5 6 7 8 9 cdleme17a KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QG=P˙Q˙Q˙P˙S˙W
11 simp1l KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QKHL
12 simp1r KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QWH
13 simp21l KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QPA
14 simp21r KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙Q¬P˙W
15 simp22 KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QQA
16 simp23l KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QSA
17 simp3 KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙Q¬S˙P˙Q
18 1 2 3 4 5 6 7 8 9 cdleme17c KHLWHPA¬P˙WQASA¬S˙P˙QP˙Q˙Q˙P˙S˙W=Q
19 11 12 13 14 15 16 17 18 syl223anc KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QP˙Q˙Q˙P˙S˙W=Q
20 10 19 eqtrd KHLWHPA¬P˙WQASA¬S˙W¬S˙P˙QG=Q