| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme21.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdleme21.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cdleme21.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
cdleme21.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdleme21.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdleme21.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
| 7 |
|
cdleme21.f |
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
| 8 |
|
cdleme21g.g |
|- G = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) ) |
| 9 |
|
cdleme21g.d |
|- D = ( ( R .\/ S ) ./\ W ) |
| 10 |
|
cdleme21g.y |
|- Y = ( ( R .\/ T ) ./\ W ) |
| 11 |
|
cdleme21g.n |
|- N = ( ( P .\/ Q ) ./\ ( F .\/ D ) ) |
| 12 |
|
cdleme21g.o |
|- O = ( ( P .\/ Q ) ./\ ( G .\/ Y ) ) |
| 13 |
|
oveq1 |
|- ( S = T -> ( S .\/ U ) = ( T .\/ U ) ) |
| 14 |
|
oveq2 |
|- ( S = T -> ( P .\/ S ) = ( P .\/ T ) ) |
| 15 |
14
|
oveq1d |
|- ( S = T -> ( ( P .\/ S ) ./\ W ) = ( ( P .\/ T ) ./\ W ) ) |
| 16 |
15
|
oveq2d |
|- ( S = T -> ( Q .\/ ( ( P .\/ S ) ./\ W ) ) = ( Q .\/ ( ( P .\/ T ) ./\ W ) ) ) |
| 17 |
13 16
|
oveq12d |
|- ( S = T -> ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) ) ) |
| 18 |
17 7 8
|
3eqtr4g |
|- ( S = T -> F = G ) |
| 19 |
|
oveq2 |
|- ( S = T -> ( R .\/ S ) = ( R .\/ T ) ) |
| 20 |
19
|
oveq1d |
|- ( S = T -> ( ( R .\/ S ) ./\ W ) = ( ( R .\/ T ) ./\ W ) ) |
| 21 |
20 9 10
|
3eqtr4g |
|- ( S = T -> D = Y ) |
| 22 |
18 21
|
oveq12d |
|- ( S = T -> ( F .\/ D ) = ( G .\/ Y ) ) |
| 23 |
22
|
oveq2d |
|- ( S = T -> ( ( P .\/ Q ) ./\ ( F .\/ D ) ) = ( ( P .\/ Q ) ./\ ( G .\/ Y ) ) ) |
| 24 |
23 11 12
|
3eqtr4g |
|- ( S = T -> N = O ) |
| 25 |
24
|
eqeq1d |
|- ( S = T -> ( N = O <-> O = O ) ) |
| 26 |
|
simpl11 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) /\ S =/= T ) -> ( K e. HL /\ W e. H ) ) |
| 27 |
|
simpl12 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) /\ S =/= T ) -> ( P e. A /\ -. P .<_ W ) ) |
| 28 |
|
simpl13 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) /\ S =/= T ) -> ( Q e. A /\ -. Q .<_ W ) ) |
| 29 |
|
simpl21 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) /\ S =/= T ) -> ( R e. A /\ -. R .<_ W ) ) |
| 30 |
|
simpl22 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) /\ S =/= T ) -> ( S e. A /\ -. S .<_ W ) ) |
| 31 |
|
simpl23 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) /\ S =/= T ) -> ( T e. A /\ -. T .<_ W ) ) |
| 32 |
|
simpl3l |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) /\ S =/= T ) -> P =/= Q ) |
| 33 |
|
simpr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) /\ S =/= T ) -> S =/= T ) |
| 34 |
32 33
|
jca |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) /\ S =/= T ) -> ( P =/= Q /\ S =/= T ) ) |
| 35 |
|
simpl3r |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) /\ S =/= T ) -> ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) |
| 36 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdleme21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( ( P =/= Q /\ S =/= T ) /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) -> N = O ) |
| 37 |
26 27 28 29 30 31 34 35 36
|
syl332anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) /\ S =/= T ) -> N = O ) |
| 38 |
|
eqidd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) -> O = O ) |
| 39 |
25 37 38
|
pm2.61ne |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) /\ ( T e. A /\ -. T .<_ W ) ) /\ ( P =/= Q /\ ( -. S .<_ ( P .\/ Q ) /\ -. T .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) ) -> N = O ) |