Metamath Proof Explorer


Theorem cdleme48gfv1

Description: TODO: fix comment. (Contributed by NM, 9-Apr-2013)

Ref Expression
Hypotheses cdlemef46g.b
|- B = ( Base ` K )
cdlemef46g.l
|- .<_ = ( le ` K )
cdlemef46g.j
|- .\/ = ( join ` K )
cdlemef46g.m
|- ./\ = ( meet ` K )
cdlemef46g.a
|- A = ( Atoms ` K )
cdlemef46g.h
|- H = ( LHyp ` K )
cdlemef46g.u
|- U = ( ( P .\/ Q ) ./\ W )
cdlemef46g.d
|- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
cdlemefs46g.e
|- E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )
cdlemef46g.f
|- F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) )
cdlemef46.v
|- V = ( ( Q .\/ P ) ./\ W )
cdlemef46.n
|- N = ( ( v .\/ V ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) )
cdlemefs46.o
|- O = ( ( Q .\/ P ) ./\ ( N .\/ ( ( u .\/ v ) ./\ W ) ) )
cdlemef46.g
|- G = ( a e. B |-> if ( ( Q =/= P /\ -. a .<_ W ) , ( iota_ c e. B A. u e. A ( ( -. u .<_ W /\ ( u .\/ ( a ./\ W ) ) = a ) -> c = ( if ( u .<_ ( Q .\/ P ) , ( iota_ b e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( Q .\/ P ) ) -> b = O ) ) , [_ u / v ]_ N ) .\/ ( a ./\ W ) ) ) ) , a ) )
Assertion cdleme48gfv1
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( G ` ( F ` X ) ) = X )

Proof

Step Hyp Ref Expression
1 cdlemef46g.b
 |-  B = ( Base ` K )
2 cdlemef46g.l
 |-  .<_ = ( le ` K )
3 cdlemef46g.j
 |-  .\/ = ( join ` K )
4 cdlemef46g.m
 |-  ./\ = ( meet ` K )
5 cdlemef46g.a
 |-  A = ( Atoms ` K )
6 cdlemef46g.h
 |-  H = ( LHyp ` K )
7 cdlemef46g.u
 |-  U = ( ( P .\/ Q ) ./\ W )
8 cdlemef46g.d
 |-  D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
9 cdlemefs46g.e
 |-  E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )
10 cdlemef46g.f
 |-  F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) )
11 cdlemef46.v
 |-  V = ( ( Q .\/ P ) ./\ W )
12 cdlemef46.n
 |-  N = ( ( v .\/ V ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) )
13 cdlemefs46.o
 |-  O = ( ( Q .\/ P ) ./\ ( N .\/ ( ( u .\/ v ) ./\ W ) ) )
14 cdlemef46.g
 |-  G = ( a e. B |-> if ( ( Q =/= P /\ -. a .<_ W ) , ( iota_ c e. B A. u e. A ( ( -. u .<_ W /\ ( u .\/ ( a ./\ W ) ) = a ) -> c = ( if ( u .<_ ( Q .\/ P ) , ( iota_ b e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( Q .\/ P ) ) -> b = O ) ) , [_ u / v ]_ N ) .\/ ( a ./\ W ) ) ) ) , a ) )
15 simpl1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( K e. HL /\ W e. H ) )
16 simprr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( X e. B /\ -. X .<_ W ) )
17 1 2 3 4 5 6 lhpmcvr2
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> E. e e. A ( -. e .<_ W /\ ( e .\/ ( X ./\ W ) ) = X ) )
18 15 16 17 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) ) -> E. e e. A ( -. e .<_ W /\ ( e .\/ ( X ./\ W ) ) = X ) )
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme48d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( e e. A /\ -. e .<_ W ) /\ ( e .\/ ( X ./\ W ) ) = X ) ) -> ( G ` ( F ` X ) ) = X )
20 19 3expia
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( ( ( e e. A /\ -. e .<_ W ) /\ ( e .\/ ( X ./\ W ) ) = X ) -> ( G ` ( F ` X ) ) = X ) )
21 20 exp4c
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( e e. A -> ( -. e .<_ W -> ( ( e .\/ ( X ./\ W ) ) = X -> ( G ` ( F ` X ) ) = X ) ) ) )
22 21 imp4a
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( e e. A -> ( ( -. e .<_ W /\ ( e .\/ ( X ./\ W ) ) = X ) -> ( G ` ( F ` X ) ) = X ) ) )
23 22 rexlimdv
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( E. e e. A ( -. e .<_ W /\ ( e .\/ ( X ./\ W ) ) = X ) -> ( G ` ( F ` X ) ) = X ) )
24 18 23 mpd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( G ` ( F ` X ) ) = X )