Metamath Proof Explorer


Theorem cdleme48d

Description: TODO: fix comment. (Contributed by NM, 8-Apr-2013)

Ref Expression
Hypotheses cdlemef46g.b
|- B = ( Base ` K )
cdlemef46g.l
|- .<_ = ( le ` K )
cdlemef46g.j
|- .\/ = ( join ` K )
cdlemef46g.m
|- ./\ = ( meet ` K )
cdlemef46g.a
|- A = ( Atoms ` K )
cdlemef46g.h
|- H = ( LHyp ` K )
cdlemef46g.u
|- U = ( ( P .\/ Q ) ./\ W )
cdlemef46g.d
|- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
cdlemefs46g.e
|- E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )
cdlemef46g.f
|- F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) )
cdlemef46.v
|- V = ( ( Q .\/ P ) ./\ W )
cdlemef46.n
|- N = ( ( v .\/ V ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) )
cdlemefs46.o
|- O = ( ( Q .\/ P ) ./\ ( N .\/ ( ( u .\/ v ) ./\ W ) ) )
cdlemef46.g
|- G = ( a e. B |-> if ( ( Q =/= P /\ -. a .<_ W ) , ( iota_ c e. B A. u e. A ( ( -. u .<_ W /\ ( u .\/ ( a ./\ W ) ) = a ) -> c = ( if ( u .<_ ( Q .\/ P ) , ( iota_ b e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( Q .\/ P ) ) -> b = O ) ) , [_ u / v ]_ N ) .\/ ( a ./\ W ) ) ) ) , a ) )
Assertion cdleme48d
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> ( G ` ( F ` X ) ) = X )

Proof

Step Hyp Ref Expression
1 cdlemef46g.b
 |-  B = ( Base ` K )
2 cdlemef46g.l
 |-  .<_ = ( le ` K )
3 cdlemef46g.j
 |-  .\/ = ( join ` K )
4 cdlemef46g.m
 |-  ./\ = ( meet ` K )
5 cdlemef46g.a
 |-  A = ( Atoms ` K )
6 cdlemef46g.h
 |-  H = ( LHyp ` K )
7 cdlemef46g.u
 |-  U = ( ( P .\/ Q ) ./\ W )
8 cdlemef46g.d
 |-  D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
9 cdlemefs46g.e
 |-  E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )
10 cdlemef46g.f
 |-  F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) )
11 cdlemef46.v
 |-  V = ( ( Q .\/ P ) ./\ W )
12 cdlemef46.n
 |-  N = ( ( v .\/ V ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) )
13 cdlemefs46.o
 |-  O = ( ( Q .\/ P ) ./\ ( N .\/ ( ( u .\/ v ) ./\ W ) ) )
14 cdlemef46.g
 |-  G = ( a e. B |-> if ( ( Q =/= P /\ -. a .<_ W ) , ( iota_ c e. B A. u e. A ( ( -. u .<_ W /\ ( u .\/ ( a ./\ W ) ) = a ) -> c = ( if ( u .<_ ( Q .\/ P ) , ( iota_ b e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( Q .\/ P ) ) -> b = O ) ) , [_ u / v ]_ N ) .\/ ( a ./\ W ) ) ) ) , a ) )
15 simp1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )
16 simp2l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> P =/= Q )
17 simp2rl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> X e. B )
18 vex
 |-  s e. _V
19 eqid
 |-  ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) )
20 8 19 cdleme31sc
 |-  ( s e. _V -> [_ s / t ]_ D = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) )
21 18 20 ax-mp
 |-  [_ s / t ]_ D = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) )
22 eqid
 |-  ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) = ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) )
23 eqid
 |-  if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) = if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D )
24 eqid
 |-  ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) )
25 1 2 3 4 5 6 7 21 8 9 22 23 24 10 cdleme32fvcl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ X e. B ) -> ( F ` X ) e. B )
26 15 17 25 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> ( F ` X ) e. B )
27 1 2 3 4 5 6 7 8 9 10 cdleme48bw
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> -. ( F ` X ) .<_ W )
28 26 27 jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> ( ( F ` X ) e. B /\ -. ( F ` X ) .<_ W ) )
29 simp3l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> ( S e. A /\ -. S .<_ W ) )
30 1 2 3 4 5 6 7 8 9 10 cdleme46fvaw
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( ( F ` S ) e. A /\ -. ( F ` S ) .<_ W ) )
31 15 29 30 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> ( ( F ` S ) e. A /\ -. ( F ` S ) .<_ W ) )
32 1 2 3 4 5 6 7 8 9 10 cdleme48b
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> ( ( F ` X ) ./\ W ) = ( X ./\ W ) )
33 32 oveq2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> ( ( F ` S ) .\/ ( ( F ` X ) ./\ W ) ) = ( ( F ` S ) .\/ ( X ./\ W ) ) )
34 1 2 3 4 5 6 7 8 9 10 cdleme48fv
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> ( F ` X ) = ( ( F ` S ) .\/ ( X ./\ W ) ) )
35 33 34 eqtr4d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> ( ( F ` S ) .\/ ( ( F ` X ) ./\ W ) ) = ( F ` X ) )
36 1 2 3 4 5 6 11 12 13 14 cdleme4gfv
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( ( F ` X ) e. B /\ -. ( F ` X ) .<_ W ) ) /\ ( ( ( F ` S ) e. A /\ -. ( F ` S ) .<_ W ) /\ ( ( F ` S ) .\/ ( ( F ` X ) ./\ W ) ) = ( F ` X ) ) ) -> ( G ` ( F ` X ) ) = ( ( G ` ( F ` S ) ) .\/ ( ( F ` X ) ./\ W ) ) )
37 15 16 28 31 35 36 syl122anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> ( G ` ( F ` X ) ) = ( ( G ` ( F ` S ) ) .\/ ( ( F ` X ) ./\ W ) ) )
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdlemeg46gf
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( S e. A /\ -. S .<_ W ) ) ) -> ( G ` ( F ` S ) ) = S )
39 15 16 29 38 syl12anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> ( G ` ( F ` S ) ) = S )
40 39 32 oveq12d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> ( ( G ` ( F ` S ) ) .\/ ( ( F ` X ) ./\ W ) ) = ( S .\/ ( X ./\ W ) ) )
41 simp3r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> ( S .\/ ( X ./\ W ) ) = X )
42 37 40 41 3eqtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> ( G ` ( F ` X ) ) = X )