Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemefrs27.b |
|- B = ( Base ` K ) |
2 |
|
cdlemefrs27.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemefrs27.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemefrs27.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemefrs27.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemefrs27.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemefrs27.eq |
|- ( s = R -> ( ph <-> ps ) ) |
8 |
|
cdlemefrs27.nb |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> N e. B ) |
9 |
|
cdlemefrs27.rnb |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> [_ R / s ]_ N e. B ) |
10 |
|
cdlemefrs29cl.o |
|- O = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) |
11 |
|
simpl11 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ s e. A ) -> ( K e. HL /\ W e. H ) ) |
12 |
|
simpl2r |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ s e. A ) -> ( R e. A /\ -. R .<_ W ) ) |
13 |
|
simpl3 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ s e. A ) -> ps ) |
14 |
|
simpr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ s e. A ) -> s e. A ) |
15 |
1 2 3 4 5 6 7
|
cdlemefrs29pre00 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ps ) /\ s e. A ) -> ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) <-> ( -. s .<_ W /\ ( s .\/ ( R ./\ W ) ) = R ) ) ) |
16 |
11 12 13 14 15
|
syl31anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ s e. A ) -> ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) <-> ( -. s .<_ W /\ ( s .\/ ( R ./\ W ) ) = R ) ) ) |
17 |
16
|
imbi1d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ s e. A ) -> ( ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> ( ( -. s .<_ W /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) ) |
18 |
17
|
ralbidva |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( A. s e. A ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) ) |
19 |
18
|
riotabidv |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( iota_ z e. B A. s e. A ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) ) |
20 |
10 19
|
eqtr4id |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> O = ( iota_ z e. B A. s e. A ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) ) |
21 |
1 2 3 4 5 6 7 8 9
|
cdlemefrs29cpre1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> E! z e. B A. s e. A ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) |
22 |
|
riotacl |
|- ( E! z e. B A. s e. A ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) -> ( iota_ z e. B A. s e. A ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) e. B ) |
23 |
21 22
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( iota_ z e. B A. s e. A ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) e. B ) |
24 |
20 23
|
eqeltrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> O e. B ) |