Metamath Proof Explorer


Theorem cdlemefrs29clN

Description: TODO: NOT USED? Show closure of the unique element in cdlemefrs29cpre1 . (Contributed by NM, 29-Mar-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemefrs27.b 𝐵 = ( Base ‘ 𝐾 )
cdlemefrs27.l = ( le ‘ 𝐾 )
cdlemefrs27.j = ( join ‘ 𝐾 )
cdlemefrs27.m = ( meet ‘ 𝐾 )
cdlemefrs27.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemefrs27.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemefrs27.eq ( 𝑠 = 𝑅 → ( 𝜑𝜓 ) )
cdlemefrs27.nb ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊𝜑 ) ) ) → 𝑁𝐵 )
cdlemefrs27.rnb ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → 𝑅 / 𝑠 𝑁𝐵 )
cdlemefrs29cl.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) )
Assertion cdlemefrs29clN ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → 𝑂𝐵 )

Proof

Step Hyp Ref Expression
1 cdlemefrs27.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemefrs27.l = ( le ‘ 𝐾 )
3 cdlemefrs27.j = ( join ‘ 𝐾 )
4 cdlemefrs27.m = ( meet ‘ 𝐾 )
5 cdlemefrs27.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemefrs27.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemefrs27.eq ( 𝑠 = 𝑅 → ( 𝜑𝜓 ) )
8 cdlemefrs27.nb ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊𝜑 ) ) ) → 𝑁𝐵 )
9 cdlemefrs27.rnb ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → 𝑅 / 𝑠 𝑁𝐵 )
10 cdlemefrs29cl.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) )
11 simpl11 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠𝐴 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 simpl2r ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠𝐴 ) → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) )
13 simpl3 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠𝐴 ) → 𝜓 )
14 simpr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠𝐴 ) → 𝑠𝐴 )
15 1 2 3 4 5 6 7 cdlemefrs29pre00 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝜓 ) ∧ 𝑠𝐴 ) → ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) ↔ ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) ) )
16 11 12 13 14 15 syl31anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠𝐴 ) → ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) ↔ ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) ) )
17 16 imbi1d ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠𝐴 ) → ( ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ↔ ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) )
18 17 ralbidva ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → ( ∀ 𝑠𝐴 ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ↔ ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) )
19 18 riotabidv ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → ( 𝑧𝐵𝑠𝐴 ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) )
20 10 19 eqtr4id ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) )
21 1 2 3 4 5 6 7 8 9 cdlemefrs29cpre1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → ∃! 𝑧𝐵𝑠𝐴 ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) )
22 riotacl ( ∃! 𝑧𝐵𝑠𝐴 ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) → ( 𝑧𝐵𝑠𝐴 ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) ∈ 𝐵 )
23 21 22 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → ( 𝑧𝐵𝑠𝐴 ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) ∈ 𝐵 )
24 20 23 eqeltrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → 𝑂𝐵 )