Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemefrs27.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemefrs27.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemefrs27.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemefrs27.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdlemefrs27.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdlemefrs27.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdlemefrs27.eq |
⊢ ( 𝑠 = 𝑅 → ( 𝜑 ↔ 𝜓 ) ) |
8 |
|
cdlemefrs27.nb |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ) → 𝑁 ∈ 𝐵 ) |
9 |
|
cdlemefrs27.rnb |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ∈ 𝐵 ) |
10 |
1 2 3 4 5 6 7 8 9
|
cdlemefrs29bpre1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ∃ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) |
11 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
simp2rl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → 𝑅 ∈ 𝐴 ) |
13 |
1 5
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ 𝐵 ) |
14 |
12 13
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → 𝑅 ∈ 𝐵 ) |
15 |
|
simp2rr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ¬ 𝑅 ≤ 𝑊 ) |
16 |
1 2 3 4 5 6
|
lhpmcvr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐵 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ) |
17 |
11 14 15 16
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ) |
18 |
|
simpl3 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠 ∈ 𝐴 ) → 𝜓 ) |
19 |
7
|
pm5.32ri |
⊢ ( ( 𝜑 ∧ 𝑠 = 𝑅 ) ↔ ( 𝜓 ∧ 𝑠 = 𝑅 ) ) |
20 |
19
|
baibr |
⊢ ( 𝜓 → ( 𝑠 = 𝑅 ↔ ( 𝜑 ∧ 𝑠 = 𝑅 ) ) ) |
21 |
18 20
|
syl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝑠 = 𝑅 ↔ ( 𝜑 ∧ 𝑠 = 𝑅 ) ) ) |
22 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) |
23 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
24 |
2 4 23 5 6
|
lhpmat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ( 𝑅 ∧ 𝑊 ) = ( 0. ‘ 𝐾 ) ) |
25 |
11 22 24
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ( 𝑅 ∧ 𝑊 ) = ( 0. ‘ 𝐾 ) ) |
26 |
25
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝑅 ∧ 𝑊 ) = ( 0. ‘ 𝐾 ) ) |
27 |
26
|
oveq2d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = ( 𝑠 ∨ ( 0. ‘ 𝐾 ) ) ) |
28 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → 𝐾 ∈ HL ) |
29 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
30 |
28 29
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → 𝐾 ∈ OL ) |
31 |
1 5
|
atbase |
⊢ ( 𝑠 ∈ 𝐴 → 𝑠 ∈ 𝐵 ) |
32 |
1 3 23
|
olj01 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑠 ∈ 𝐵 ) → ( 𝑠 ∨ ( 0. ‘ 𝐾 ) ) = 𝑠 ) |
33 |
30 31 32
|
syl2an |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝑠 ∨ ( 0. ‘ 𝐾 ) ) = 𝑠 ) |
34 |
27 33
|
eqtrd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑠 ) |
35 |
34
|
eqeq1d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ↔ 𝑠 = 𝑅 ) ) |
36 |
35
|
anbi2d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝜑 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ↔ ( 𝜑 ∧ 𝑠 = 𝑅 ) ) ) |
37 |
21 35 36
|
3bitr4d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ↔ ( 𝜑 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ) ) |
38 |
37
|
anbi2d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ↔ ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝜑 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ) ) ) |
39 |
|
anass |
⊢ ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ↔ ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝜑 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ) ) |
40 |
38 39
|
bitr4di |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ↔ ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ) ) |
41 |
40
|
rexbidva |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ( ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ↔ ∃ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ) ) |
42 |
17 41
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ∃ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ) |
43 |
|
reusv1 |
⊢ ( ∃ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → ( ∃! 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ↔ ∃ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) ) |
44 |
42 43
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ( ∃! 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ↔ ∃ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) ) |
45 |
10 44
|
mpbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ∃! 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) |