Metamath Proof Explorer


Theorem cdlemefrs32fva

Description: Part of proof of Lemma E in Crawley p. 113. Value of F at an atom not under W . TODO: FIX COMMENT. TODO: consolidate uses of lhpmat here and elsewhere, and presence/absence of s .<_ ( P .\/ Q ) term. Also, why can proof be shortened with cdleme29cl ? What is difference from cdlemefs27cl ? (Contributed by NM, 29-Mar-2013)

Ref Expression
Hypotheses cdlemefrs27.b 𝐵 = ( Base ‘ 𝐾 )
cdlemefrs27.l = ( le ‘ 𝐾 )
cdlemefrs27.j = ( join ‘ 𝐾 )
cdlemefrs27.m = ( meet ‘ 𝐾 )
cdlemefrs27.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemefrs27.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemefrs27.eq ( 𝑠 = 𝑅 → ( 𝜑𝜓 ) )
cdlemefrs27.nb ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊𝜑 ) ) ) → 𝑁𝐵 )
cdlemefrs27.rnb ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → 𝑅 / 𝑠 𝑁𝐵 )
cdleme29frs.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) )
Assertion cdlemefrs32fva ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → 𝑅 / 𝑥 𝑂 = 𝑅 / 𝑠 𝑁 )

Proof

Step Hyp Ref Expression
1 cdlemefrs27.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemefrs27.l = ( le ‘ 𝐾 )
3 cdlemefrs27.j = ( join ‘ 𝐾 )
4 cdlemefrs27.m = ( meet ‘ 𝐾 )
5 cdlemefrs27.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemefrs27.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemefrs27.eq ( 𝑠 = 𝑅 → ( 𝜑𝜓 ) )
8 cdlemefrs27.nb ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊𝜑 ) ) ) → 𝑁𝐵 )
9 cdlemefrs27.rnb ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → 𝑅 / 𝑠 𝑁𝐵 )
10 cdleme29frs.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) )
11 simp2rl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → 𝑅𝐴 )
12 1 5 atbase ( 𝑅𝐴𝑅𝐵 )
13 eqid ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) )
14 10 13 cdleme31so ( 𝑅𝐵 𝑅 / 𝑥 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) )
15 11 12 14 3syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → 𝑅 / 𝑥 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) )
16 ssidd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → 𝐵𝐵 )
17 simpll ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → ¬ 𝑠 𝑊 )
18 simpr ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 )
19 17 18 jca ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) )
20 19 imim1i ( ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) → ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) )
21 20 ralimi ( ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) → ∀ 𝑠𝐴 ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) )
22 21 rgenw 𝑧𝐵 ( ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) → ∀ 𝑠𝐴 ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) )
23 22 a1i ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → ∀ 𝑧𝐵 ( ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) → ∀ 𝑠𝐴 ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) )
24 1 2 3 4 5 6 7 8 9 cdlemefrs29bpre1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → ∃ 𝑧𝐵𝑠𝐴 ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) )
25 simpl11 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠𝐴 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
26 simpl2r ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠𝐴 ) → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) )
27 simpl3 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠𝐴 ) → 𝜓 )
28 simpr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠𝐴 ) → 𝑠𝐴 )
29 1 2 3 4 5 6 7 cdlemefrs29pre00 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝜓 ) ∧ 𝑠𝐴 ) → ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) ↔ ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) ) )
30 25 26 27 28 29 syl31anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠𝐴 ) → ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) ↔ ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) ) )
31 30 imbi1d ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠𝐴 ) → ( ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ↔ ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) )
32 31 ralbidva ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → ( ∀ 𝑠𝐴 ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ↔ ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) )
33 32 rexbidv ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → ( ∃ 𝑧𝐵𝑠𝐴 ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ↔ ∃ 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) )
34 24 33 mpbid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → ∃ 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) )
35 1 2 3 4 5 6 7 8 9 cdlemefrs29cpre1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → ∃! 𝑧𝐵𝑠𝐴 ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) )
36 riotass2 ( ( ( 𝐵𝐵 ∧ ∀ 𝑧𝐵 ( ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) → ∀ 𝑠𝐴 ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) ) ∧ ( ∃ 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ∧ ∃! 𝑧𝐵𝑠𝐴 ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) ) → ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) = ( 𝑧𝐵𝑠𝐴 ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) )
37 16 23 34 35 36 syl22anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) = ( 𝑧𝐵𝑠𝐴 ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) )
38 1 2 3 4 5 6 7 8 cdlemefrs29bpre0 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → ( ∀ 𝑠𝐴 ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ↔ 𝑧 = 𝑅 / 𝑠 𝑁 ) )
39 38 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑧𝐵 ) → ( ∀ 𝑠𝐴 ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ↔ 𝑧 = 𝑅 / 𝑠 𝑁 ) )
40 9 39 riota5 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → ( 𝑧𝐵𝑠𝐴 ( ( ( ¬ 𝑠 𝑊𝜑 ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ( 𝑅 𝑊 ) ) ) ) = 𝑅 / 𝑠 𝑁 )
41 15 37 40 3eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → 𝑅 / 𝑥 𝑂 = 𝑅 / 𝑠 𝑁 )