Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemefrs27.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemefrs27.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemefrs27.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemefrs27.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdlemefrs27.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdlemefrs27.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdlemefrs27.eq |
⊢ ( 𝑠 = 𝑅 → ( 𝜑 ↔ 𝜓 ) ) |
8 |
|
cdlemefrs27.nb |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ) → 𝑁 ∈ 𝐵 ) |
9 |
|
cdlemefrs27.rnb |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ∈ 𝐵 ) |
10 |
|
cdleme29frs.o |
⊢ 𝑂 = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ∨ ( 𝑥 ∧ 𝑊 ) ) ) ) |
11 |
|
cdleme29frs.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊 ) , 𝑂 , 𝑥 ) ) |
12 |
|
simp2rl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → 𝑅 ∈ 𝐴 ) |
13 |
1 5
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ 𝐵 ) |
14 |
12 13
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → 𝑅 ∈ 𝐵 ) |
15 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → 𝑃 ≠ 𝑄 ) |
16 |
|
simp2rr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ¬ 𝑅 ≤ 𝑊 ) |
17 |
10 11
|
cdleme31fv1s |
⊢ ( ( 𝑅 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑅 ) = ⦋ 𝑅 / 𝑥 ⦌ 𝑂 ) |
18 |
14 15 16 17
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ( 𝐹 ‘ 𝑅 ) = ⦋ 𝑅 / 𝑥 ⦌ 𝑂 ) |
19 |
1 2 3 4 5 6 7 8 9 10
|
cdlemefrs32fva |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ⦋ 𝑅 / 𝑥 ⦌ 𝑂 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) |
20 |
18 19
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ( 𝐹 ‘ 𝑅 ) = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) |