Metamath Proof Explorer


Theorem cdlemefrs32fva1

Description: Part of proof of Lemma E in Crawley p. 113. TODO: FIX COMMENT. (Contributed by NM, 29-Mar-2013)

Ref Expression
Hypotheses cdlemefrs27.b 𝐵 = ( Base ‘ 𝐾 )
cdlemefrs27.l = ( le ‘ 𝐾 )
cdlemefrs27.j = ( join ‘ 𝐾 )
cdlemefrs27.m = ( meet ‘ 𝐾 )
cdlemefrs27.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemefrs27.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemefrs27.eq ( 𝑠 = 𝑅 → ( 𝜑𝜓 ) )
cdlemefrs27.nb ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊𝜑 ) ) ) → 𝑁𝐵 )
cdlemefrs27.rnb ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → 𝑅 / 𝑠 𝑁𝐵 )
cdleme29frs.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) )
cdleme29frs.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , 𝑂 , 𝑥 ) )
Assertion cdlemefrs32fva1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → ( 𝐹𝑅 ) = 𝑅 / 𝑠 𝑁 )

Proof

Step Hyp Ref Expression
1 cdlemefrs27.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemefrs27.l = ( le ‘ 𝐾 )
3 cdlemefrs27.j = ( join ‘ 𝐾 )
4 cdlemefrs27.m = ( meet ‘ 𝐾 )
5 cdlemefrs27.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemefrs27.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemefrs27.eq ( 𝑠 = 𝑅 → ( 𝜑𝜓 ) )
8 cdlemefrs27.nb ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ( ¬ 𝑠 𝑊𝜑 ) ) ) → 𝑁𝐵 )
9 cdlemefrs27.rnb ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → 𝑅 / 𝑠 𝑁𝐵 )
10 cdleme29frs.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) )
11 cdleme29frs.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , 𝑂 , 𝑥 ) )
12 simp2rl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → 𝑅𝐴 )
13 1 5 atbase ( 𝑅𝐴𝑅𝐵 )
14 12 13 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → 𝑅𝐵 )
15 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → 𝑃𝑄 )
16 simp2rr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → ¬ 𝑅 𝑊 )
17 10 11 cdleme31fv1s ( ( 𝑅𝐵 ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 𝑊 ) ) → ( 𝐹𝑅 ) = 𝑅 / 𝑥 𝑂 )
18 14 15 16 17 syl12anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → ( 𝐹𝑅 ) = 𝑅 / 𝑥 𝑂 )
19 1 2 3 4 5 6 7 8 9 10 cdlemefrs32fva ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → 𝑅 / 𝑥 𝑂 = 𝑅 / 𝑠 𝑁 )
20 18 19 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝜓 ) → ( 𝐹𝑅 ) = 𝑅 / 𝑠 𝑁 )