Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemef47.b |
|- B = ( Base ` K ) |
2 |
|
cdlemef47.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemef47.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemef47.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemef47.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemef47.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemef47.v |
|- V = ( ( Q .\/ P ) ./\ W ) |
8 |
|
cdlemef47.n |
|- N = ( ( v .\/ V ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) ) |
9 |
|
cdlemefs47.o |
|- O = ( ( Q .\/ P ) ./\ ( N .\/ ( ( u .\/ v ) ./\ W ) ) ) |
10 |
|
cdlemef47.g |
|- G = ( a e. B |-> if ( ( Q =/= P /\ -. a .<_ W ) , ( iota_ c e. B A. u e. A ( ( -. u .<_ W /\ ( u .\/ ( a ./\ W ) ) = a ) -> c = ( if ( u .<_ ( Q .\/ P ) , ( iota_ b e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( Q .\/ P ) ) -> b = O ) ) , [_ u / v ]_ N ) .\/ ( a ./\ W ) ) ) ) , a ) ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
cdlemeg47rv |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( G ` R ) = [_ R / u ]_ [_ S / v ]_ O ) |
12 |
|
simp22l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> R e. A ) |
13 |
|
nfcvd |
|- ( R e. A -> F/_ u ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( R .\/ S ) ./\ W ) ) ) ) |
14 |
|
oveq1 |
|- ( u = R -> ( u .\/ S ) = ( R .\/ S ) ) |
15 |
14
|
oveq1d |
|- ( u = R -> ( ( u .\/ S ) ./\ W ) = ( ( R .\/ S ) ./\ W ) ) |
16 |
15
|
oveq2d |
|- ( u = R -> ( [_ S / v ]_ N .\/ ( ( u .\/ S ) ./\ W ) ) = ( [_ S / v ]_ N .\/ ( ( R .\/ S ) ./\ W ) ) ) |
17 |
16
|
oveq2d |
|- ( u = R -> ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( u .\/ S ) ./\ W ) ) ) = ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( R .\/ S ) ./\ W ) ) ) ) |
18 |
13 17
|
csbiegf |
|- ( R e. A -> [_ R / u ]_ ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( u .\/ S ) ./\ W ) ) ) = ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( R .\/ S ) ./\ W ) ) ) ) |
19 |
12 18
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> [_ R / u ]_ ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( u .\/ S ) ./\ W ) ) ) = ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( R .\/ S ) ./\ W ) ) ) ) |
20 |
|
simp23l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> S e. A ) |
21 |
|
eqid |
|- ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( u .\/ S ) ./\ W ) ) ) = ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( u .\/ S ) ./\ W ) ) ) |
22 |
9 21
|
cdleme31se2 |
|- ( S e. A -> [_ S / v ]_ O = ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( u .\/ S ) ./\ W ) ) ) ) |
23 |
20 22
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> [_ S / v ]_ O = ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( u .\/ S ) ./\ W ) ) ) ) |
24 |
23
|
csbeq2dv |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> [_ R / u ]_ [_ S / v ]_ O = [_ R / u ]_ ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( u .\/ S ) ./\ W ) ) ) ) |
25 |
|
simp1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) ) |
26 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> P =/= Q ) |
27 |
|
simp23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( S e. A /\ -. S .<_ W ) ) |
28 |
|
simp3r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> -. S .<_ ( P .\/ Q ) ) |
29 |
1 2 3 4 5 6 7 8 9 10
|
cdlemeg47b |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> ( G ` S ) = [_ S / v ]_ N ) |
30 |
25 26 27 28 29
|
syl121anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( G ` S ) = [_ S / v ]_ N ) |
31 |
30
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( G ` S ) .\/ ( ( R .\/ S ) ./\ W ) ) = ( [_ S / v ]_ N .\/ ( ( R .\/ S ) ./\ W ) ) ) |
32 |
31
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( Q .\/ P ) ./\ ( ( G ` S ) .\/ ( ( R .\/ S ) ./\ W ) ) ) = ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( R .\/ S ) ./\ W ) ) ) ) |
33 |
19 24 32
|
3eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> [_ R / u ]_ [_ S / v ]_ O = ( ( Q .\/ P ) ./\ ( ( G ` S ) .\/ ( ( R .\/ S ) ./\ W ) ) ) ) |
34 |
11 33
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( G ` R ) = ( ( Q .\/ P ) ./\ ( ( G ` S ) .\/ ( ( R .\/ S ) ./\ W ) ) ) ) |