Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemk.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemk.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
cdlemk.r |
|- R = ( ( trL ` K ) ` W ) |
8 |
|
simp3l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` F ) = ( R ` N ) ) |
9 |
8
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( P .\/ ( R ` F ) ) = ( P .\/ ( R ` N ) ) ) |
10 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( K e. HL /\ W e. H ) ) |
11 |
|
simp2l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> F e. T ) |
12 |
|
simp3r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
13 |
2 3 4 5 6 7
|
trljat3 |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( R ` F ) ) = ( ( F ` P ) .\/ ( R ` F ) ) ) |
14 |
10 11 12 13
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( P .\/ ( R ` F ) ) = ( ( F ` P ) .\/ ( R ` F ) ) ) |
15 |
|
simp2r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> N e. T ) |
16 |
2 3 4 5 6 7
|
trljat1 |
|- ( ( ( K e. HL /\ W e. H ) /\ N e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( R ` N ) ) = ( P .\/ ( N ` P ) ) ) |
17 |
10 15 12 16
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( P .\/ ( R ` N ) ) = ( P .\/ ( N ` P ) ) ) |
18 |
9 14 17
|
3eqtr3rd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( P .\/ ( N ` P ) ) = ( ( F ` P ) .\/ ( R ` F ) ) ) |