Metamath Proof Explorer


Theorem cdlemk1

Description: Part of proof of Lemma K of Crawley p. 118. (Contributed by NM, 22-Jun-2013)

Ref Expression
Hypotheses cdlemk.b
|- B = ( Base ` K )
cdlemk.l
|- .<_ = ( le ` K )
cdlemk.j
|- .\/ = ( join ` K )
cdlemk.a
|- A = ( Atoms ` K )
cdlemk.h
|- H = ( LHyp ` K )
cdlemk.t
|- T = ( ( LTrn ` K ) ` W )
cdlemk.r
|- R = ( ( trL ` K ) ` W )
Assertion cdlemk1
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( P .\/ ( N ` P ) ) = ( ( F ` P ) .\/ ( R ` F ) ) )

Proof

Step Hyp Ref Expression
1 cdlemk.b
 |-  B = ( Base ` K )
2 cdlemk.l
 |-  .<_ = ( le ` K )
3 cdlemk.j
 |-  .\/ = ( join ` K )
4 cdlemk.a
 |-  A = ( Atoms ` K )
5 cdlemk.h
 |-  H = ( LHyp ` K )
6 cdlemk.t
 |-  T = ( ( LTrn ` K ) ` W )
7 cdlemk.r
 |-  R = ( ( trL ` K ) ` W )
8 simp3l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` F ) = ( R ` N ) )
9 8 oveq2d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( P .\/ ( R ` F ) ) = ( P .\/ ( R ` N ) ) )
10 simp1
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( K e. HL /\ W e. H ) )
11 simp2l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> F e. T )
12 simp3r
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( P e. A /\ -. P .<_ W ) )
13 2 3 4 5 6 7 trljat3
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( R ` F ) ) = ( ( F ` P ) .\/ ( R ` F ) ) )
14 10 11 12 13 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( P .\/ ( R ` F ) ) = ( ( F ` P ) .\/ ( R ` F ) ) )
15 simp2r
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> N e. T )
16 2 3 4 5 6 7 trljat1
 |-  ( ( ( K e. HL /\ W e. H ) /\ N e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( R ` N ) ) = ( P .\/ ( N ` P ) ) )
17 10 15 12 16 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( P .\/ ( R ` N ) ) = ( P .\/ ( N ` P ) ) )
18 9 14 17 3eqtr3rd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ N e. T ) /\ ( ( R ` F ) = ( R ` N ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( P .\/ ( N ` P ) ) = ( ( F ` P ) .\/ ( R ` F ) ) )