Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk3.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk3.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk3.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk3.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemk3.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemk3.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemk3.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
|
cdlemk3.r |
|- R = ( ( trL ` K ) ` W ) |
9 |
|
cdlemk3.s |
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) |
10 |
|
cdlemk3.u1 |
|- Y = ( d e. T , e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( S ` d ) ` P ) .\/ ( R ` ( e o. `' d ) ) ) ) ) ) |
11 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( K e. HL /\ W e. H ) ) |
12 |
1 6 7 8
|
cdlemftr2 |
|- ( ( K e. HL /\ W e. H ) -> E. x e. T ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) ) |
13 |
11 12
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( P e. A /\ -. P .<_ W ) ) -> E. x e. T ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) ) |
14 |
|
simp3r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( P e. A /\ -. P .<_ W ) /\ ( x e. T /\ ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) ) ) -> ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) ) |
15 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( P e. A /\ -. P .<_ W ) /\ ( x e. T /\ ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
16 |
|
simp133 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( P e. A /\ -. P .<_ W ) /\ ( x e. T /\ ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) ) ) -> ( R ` F ) = ( R ` N ) ) |
17 |
|
simp131 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( P e. A /\ -. P .<_ W ) /\ ( x e. T /\ ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) ) ) -> G e. T ) |
18 |
|
simp121 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( P e. A /\ -. P .<_ W ) /\ ( x e. T /\ ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) ) ) -> F e. T ) |
19 |
|
simp3l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( P e. A /\ -. P .<_ W ) /\ ( x e. T /\ ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) ) ) -> x e. T ) |
20 |
|
simp123 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( P e. A /\ -. P .<_ W ) /\ ( x e. T /\ ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) ) ) -> N e. T ) |
21 |
|
simp3r2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( P e. A /\ -. P .<_ W ) /\ ( x e. T /\ ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) ) ) -> ( R ` x ) =/= ( R ` F ) ) |
22 |
|
simp3r3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( P e. A /\ -. P .<_ W ) /\ ( x e. T /\ ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) ) ) -> ( R ` x ) =/= ( R ` G ) ) |
23 |
21 22
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( P e. A /\ -. P .<_ W ) /\ ( x e. T /\ ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) ) ) -> ( ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) ) |
24 |
|
simp122 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( P e. A /\ -. P .<_ W ) /\ ( x e. T /\ ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) ) ) -> F =/= ( _I |` B ) ) |
25 |
|
simp132 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( P e. A /\ -. P .<_ W ) /\ ( x e. T /\ ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) ) ) -> G =/= ( _I |` B ) ) |
26 |
|
simp3r1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( P e. A /\ -. P .<_ W ) /\ ( x e. T /\ ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) ) ) -> x =/= ( _I |` B ) ) |
27 |
24 25 26
|
3jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( P e. A /\ -. P .<_ W ) /\ ( x e. T /\ ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) ) ) -> ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ x =/= ( _I |` B ) ) ) |
28 |
|
simp2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( P e. A /\ -. P .<_ W ) /\ ( x e. T /\ ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
29 |
1 2 3 4 5 6 7 8 9 10
|
cdlemkuel-3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( F e. T /\ x e. T /\ N e. T ) /\ ( ( ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ x =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( x Y G ) e. T ) |
30 |
15 16 17 18 19 20 23 27 28 29
|
syl333anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( P e. A /\ -. P .<_ W ) /\ ( x e. T /\ ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) ) ) -> ( x Y G ) e. T ) |
31 |
14 30
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( P e. A /\ -. P .<_ W ) /\ ( x e. T /\ ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) ) ) -> ( ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) /\ ( x Y G ) e. T ) ) |
32 |
31
|
3expia |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( x e. T /\ ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) ) -> ( ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) /\ ( x Y G ) e. T ) ) ) |
33 |
32
|
expd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( x e. T -> ( ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) -> ( ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) /\ ( x Y G ) e. T ) ) ) ) |
34 |
33
|
reximdvai |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( E. x e. T ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) -> E. x e. T ( ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) /\ ( x Y G ) e. T ) ) ) |
35 |
13 34
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( P e. A /\ -. P .<_ W ) ) -> E. x e. T ( ( x =/= ( _I |` B ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) ) /\ ( x Y G ) e. T ) ) |