Metamath Proof Explorer


Theorem cdlemk26-3

Description: Part of proof of Lemma K of Crawley p. 118. Eliminate the x requirements from cdlemk25-3 . (Contributed by NM, 10-Jul-2013)

Ref Expression
Hypotheses cdlemk3.b
|- B = ( Base ` K )
cdlemk3.l
|- .<_ = ( le ` K )
cdlemk3.j
|- .\/ = ( join ` K )
cdlemk3.m
|- ./\ = ( meet ` K )
cdlemk3.a
|- A = ( Atoms ` K )
cdlemk3.h
|- H = ( LHyp ` K )
cdlemk3.t
|- T = ( ( LTrn ` K ) ` W )
cdlemk3.r
|- R = ( ( trL ` K ) ` W )
cdlemk3.s
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) )
cdlemk3.u1
|- Y = ( d e. T , e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( S ` d ) ` P ) .\/ ( R ` ( e o. `' d ) ) ) ) ) )
Assertion cdlemk26-3
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) -> ( ( D Y G ) ` P ) = ( ( C Y G ) ` P ) )

Proof

Step Hyp Ref Expression
1 cdlemk3.b
 |-  B = ( Base ` K )
2 cdlemk3.l
 |-  .<_ = ( le ` K )
3 cdlemk3.j
 |-  .\/ = ( join ` K )
4 cdlemk3.m
 |-  ./\ = ( meet ` K )
5 cdlemk3.a
 |-  A = ( Atoms ` K )
6 cdlemk3.h
 |-  H = ( LHyp ` K )
7 cdlemk3.t
 |-  T = ( ( LTrn ` K ) ` W )
8 cdlemk3.r
 |-  R = ( ( trL ` K ) ` W )
9 cdlemk3.s
 |-  S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) )
10 cdlemk3.u1
 |-  Y = ( d e. T , e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( S ` d ) ` P ) .\/ ( R ` ( e o. `' d ) ) ) ) ) )
11 simp11l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) -> K e. HL )
12 simp11r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) -> W e. H )
13 1 6 7 8 cdlemftr3
 |-  ( ( K e. HL /\ W e. H ) -> E. x e. T ( x =/= ( _I |` B ) /\ ( ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) /\ ( R ` x ) =/= ( R ` D ) ) ) )
14 11 12 13 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) -> E. x e. T ( x =/= ( _I |` B ) /\ ( ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) /\ ( R ` x ) =/= ( R ` D ) ) ) )
15 simp111
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) /\ x e. T /\ ( x =/= ( _I |` B ) /\ ( ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) /\ ( R ` x ) =/= ( R ` D ) ) ) ) -> ( K e. HL /\ W e. H ) )
16 simp112
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) /\ x e. T /\ ( x =/= ( _I |` B ) /\ ( ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) /\ ( R ` x ) =/= ( R ` D ) ) ) ) -> ( F e. T /\ D e. T /\ N e. T ) )
17 simp13l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) -> G e. T )
18 17 3ad2ant1
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) /\ x e. T /\ ( x =/= ( _I |` B ) /\ ( ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) /\ ( R ` x ) =/= ( R ` D ) ) ) ) -> G e. T )
19 simp13r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) -> C e. T )
20 19 3ad2ant1
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) /\ x e. T /\ ( x =/= ( _I |` B ) /\ ( ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) /\ ( R ` x ) =/= ( R ` D ) ) ) ) -> C e. T )
21 simp2
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) /\ x e. T /\ ( x =/= ( _I |` B ) /\ ( ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) /\ ( R ` x ) =/= ( R ` D ) ) ) ) -> x e. T )
22 18 20 21 3jca
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) /\ x e. T /\ ( x =/= ( _I |` B ) /\ ( ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) /\ ( R ` x ) =/= ( R ` D ) ) ) ) -> ( G e. T /\ C e. T /\ x e. T ) )
23 simp121
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) /\ x e. T /\ ( x =/= ( _I |` B ) /\ ( ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) /\ ( R ` x ) =/= ( R ` D ) ) ) ) -> ( P e. A /\ -. P .<_ W ) )
24 simp122
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) /\ x e. T /\ ( x =/= ( _I |` B ) /\ ( ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) /\ ( R ` x ) =/= ( R ` D ) ) ) ) -> ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) )
25 simp23l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) -> G =/= ( _I |` B ) )
26 25 3ad2ant1
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) /\ x e. T /\ ( x =/= ( _I |` B ) /\ ( ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) /\ ( R ` x ) =/= ( R ` D ) ) ) ) -> G =/= ( _I |` B ) )
27 simp23r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) -> C =/= ( _I |` B ) )
28 27 3ad2ant1
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) /\ x e. T /\ ( x =/= ( _I |` B ) /\ ( ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) /\ ( R ` x ) =/= ( R ` D ) ) ) ) -> C =/= ( _I |` B ) )
29 simp3l
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) /\ x e. T /\ ( x =/= ( _I |` B ) /\ ( ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) /\ ( R ` x ) =/= ( R ` D ) ) ) ) -> x =/= ( _I |` B ) )
30 26 28 29 3jca
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) /\ x e. T /\ ( x =/= ( _I |` B ) /\ ( ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) /\ ( R ` x ) =/= ( R ` D ) ) ) ) -> ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ x =/= ( _I |` B ) ) )
31 simp13l
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) /\ x e. T /\ ( x =/= ( _I |` B ) /\ ( ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) /\ ( R ` x ) =/= ( R ` D ) ) ) ) -> ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) )
32 simp13r
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) /\ x e. T /\ ( x =/= ( _I |` B ) /\ ( ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) /\ ( R ` x ) =/= ( R ` D ) ) ) ) -> ( R ` G ) =/= ( R ` D ) )
33 simp3r3
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) /\ x e. T /\ ( x =/= ( _I |` B ) /\ ( ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) /\ ( R ` x ) =/= ( R ` D ) ) ) ) -> ( R ` x ) =/= ( R ` D ) )
34 simp3r1
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) /\ x e. T /\ ( x =/= ( _I |` B ) /\ ( ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) /\ ( R ` x ) =/= ( R ` D ) ) ) ) -> ( R ` x ) =/= ( R ` F ) )
35 simp3r2
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) /\ x e. T /\ ( x =/= ( _I |` B ) /\ ( ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) /\ ( R ` x ) =/= ( R ` D ) ) ) ) -> ( R ` x ) =/= ( R ` G ) )
36 35 necomd
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) /\ x e. T /\ ( x =/= ( _I |` B ) /\ ( ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) /\ ( R ` x ) =/= ( R ` D ) ) ) ) -> ( R ` G ) =/= ( R ` x ) )
37 33 34 36 3jca
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) /\ x e. T /\ ( x =/= ( _I |` B ) /\ ( ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) /\ ( R ` x ) =/= ( R ` D ) ) ) ) -> ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) )
38 1 2 3 4 5 6 7 8 9 10 cdlemk25-3
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T /\ x e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ x =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) /\ ( ( R ` x ) =/= ( R ` D ) /\ ( R ` x ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` x ) ) ) ) -> ( ( D Y G ) ` P ) = ( ( C Y G ) ` P ) )
39 15 16 22 23 24 30 31 32 37 38 syl333anc
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) /\ x e. T /\ ( x =/= ( _I |` B ) /\ ( ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) /\ ( R ` x ) =/= ( R ` D ) ) ) ) -> ( ( D Y G ) ` P ) = ( ( C Y G ) ` P ) )
40 39 rexlimdv3a
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) -> ( E. x e. T ( x =/= ( _I |` B ) /\ ( ( R ` x ) =/= ( R ` F ) /\ ( R ` x ) =/= ( R ` G ) /\ ( R ` x ) =/= ( R ` D ) ) ) -> ( ( D Y G ) ` P ) = ( ( C Y G ) ` P ) ) )
41 14 40 mpd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ D e. T /\ N e. T ) /\ ( G e. T /\ C e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ D =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` C ) /\ ( R ` C ) =/= ( R ` F ) /\ ( R ` D ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` D ) ) ) -> ( ( D Y G ) ` P ) = ( ( C Y G ) ` P ) )