Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk3.b |
|
2 |
|
cdlemk3.l |
|
3 |
|
cdlemk3.j |
|
4 |
|
cdlemk3.m |
|
5 |
|
cdlemk3.a |
|
6 |
|
cdlemk3.h |
|
7 |
|
cdlemk3.t |
|
8 |
|
cdlemk3.r |
|
9 |
|
cdlemk3.s |
|
10 |
|
cdlemk3.u1 |
|
11 |
|
simp11l |
|
12 |
|
simp11r |
|
13 |
1 6 7 8
|
cdlemftr3 |
|
14 |
11 12 13
|
syl2anc |
|
15 |
|
simp111 |
|
16 |
|
simp112 |
|
17 |
|
simp13l |
|
18 |
17
|
3ad2ant1 |
|
19 |
|
simp13r |
|
20 |
19
|
3ad2ant1 |
|
21 |
|
simp2 |
|
22 |
18 20 21
|
3jca |
|
23 |
|
simp121 |
|
24 |
|
simp122 |
|
25 |
|
simp23l |
|
26 |
25
|
3ad2ant1 |
|
27 |
|
simp23r |
|
28 |
27
|
3ad2ant1 |
|
29 |
|
simp3l |
|
30 |
26 28 29
|
3jca |
|
31 |
|
simp13l |
|
32 |
|
simp13r |
|
33 |
|
simp3r3 |
|
34 |
|
simp3r1 |
|
35 |
|
simp3r2 |
|
36 |
35
|
necomd |
|
37 |
33 34 36
|
3jca |
|
38 |
1 2 3 4 5 6 7 8 9 10
|
cdlemk25-3 |
|
39 |
15 16 22 23 24 30 31 32 37 38
|
syl333anc |
|
40 |
39
|
rexlimdv3a |
|
41 |
14 40
|
mpd |
|