Metamath Proof Explorer


Theorem cdlemk27-3

Description: Part of proof of Lemma K of Crawley p. 118. Eliminate the P from the conclusion of cdlemk25-3 . (Contributed by NM, 10-Jul-2013)

Ref Expression
Hypotheses cdlemk3.b B = Base K
cdlemk3.l ˙ = K
cdlemk3.j ˙ = join K
cdlemk3.m ˙ = meet K
cdlemk3.a A = Atoms K
cdlemk3.h H = LHyp K
cdlemk3.t T = LTrn K W
cdlemk3.r R = trL K W
cdlemk3.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk3.u1 Y = d T , e T ι j T | j P = P ˙ R e ˙ S d P ˙ R e d -1
Assertion cdlemk27-3 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D D Y G = C Y G

Proof

Step Hyp Ref Expression
1 cdlemk3.b B = Base K
2 cdlemk3.l ˙ = K
3 cdlemk3.j ˙ = join K
4 cdlemk3.m ˙ = meet K
5 cdlemk3.a A = Atoms K
6 cdlemk3.h H = LHyp K
7 cdlemk3.t T = LTrn K W
8 cdlemk3.r R = trL K W
9 cdlemk3.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 cdlemk3.u1 Y = d T , e T ι j T | j P = P ˙ R e ˙ S d P ˙ R e d -1
11 simp11 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D K HL W H
12 simp221 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R F = R N
13 simp13l K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D G T
14 simp12 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D F T D T N T
15 simp3l3 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R D R F
16 simp3r K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R G R D
17 16 necomd K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R D R G
18 15 17 jca K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R D R F R D R G
19 simp222 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D F I B
20 simp23l K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D G I B
21 simp223 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D D I B
22 19 20 21 3jca K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D F I B G I B D I B
23 simp21 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D P A ¬ P ˙ W
24 1 2 3 4 5 6 7 8 9 10 cdlemkuel-3 K HL W H R F = R N G T F T D T N T R D R F R D R G F I B G I B D I B P A ¬ P ˙ W D Y G T
25 11 12 13 14 18 22 23 24 syl313anc K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D D Y G T
26 simp121 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D F T
27 simp13r K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D C T
28 simp123 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D N T
29 simp3l2 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R F
30 simp3l1 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R G R C
31 30 necomd K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R G
32 29 31 jca K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D R C R F R C R G
33 simp23r K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D C I B
34 19 20 33 3jca K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D F I B G I B C I B
35 1 2 3 4 5 6 7 8 9 10 cdlemkuel-3 K HL W H R F = R N G T F T C T N T R C R F R C R G F I B G I B C I B P A ¬ P ˙ W C Y G T
36 11 12 13 26 27 28 32 34 23 35 syl333anc K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D C Y G T
37 1 2 3 4 5 6 7 8 9 10 cdlemk26-3 K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D D Y G P = C Y G P
38 2 5 6 7 cdlemd K HL W H D Y G T C Y G T P A ¬ P ˙ W D Y G P = C Y G P D Y G = C Y G
39 11 25 36 23 37 38 syl311anc K HL W H F T D T N T G T C T P A ¬ P ˙ W R F = R N F I B D I B G I B C I B R G R C R C R F R D R F R G R D D Y G = C Y G