Description: Part of proof of Lemma K of Crawley p. 118. (Contributed by NM, 14-Jul-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemk3.b | |
|
cdlemk3.l | |
||
cdlemk3.j | |
||
cdlemk3.m | |
||
cdlemk3.a | |
||
cdlemk3.h | |
||
cdlemk3.t | |
||
cdlemk3.r | |
||
cdlemk3.s | |
||
cdlemk3.u1 | |
||
Assertion | cdlemk28-3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk3.b | |
|
2 | cdlemk3.l | |
|
3 | cdlemk3.j | |
|
4 | cdlemk3.m | |
|
5 | cdlemk3.a | |
|
6 | cdlemk3.h | |
|
7 | cdlemk3.t | |
|
8 | cdlemk3.r | |
|
9 | cdlemk3.s | |
|
10 | cdlemk3.u1 | |
|
11 | simp1 | |
|
12 | simp21l | |
|
13 | simp21r | |
|
14 | simp23 | |
|
15 | 12 13 14 | 3jca | |
16 | simp22l | |
|
17 | simp22r | |
|
18 | simp3r | |
|
19 | 16 17 18 | 3jca | |
20 | simp3l | |
|
21 | 1 2 3 4 5 6 7 8 9 10 | cdlemk26b-3 | |
22 | 11 15 19 20 21 | syl31anc | |
23 | simp11 | |
|
24 | 12 | 3ad2ant1 | |
25 | simp2l | |
|
26 | simp123 | |
|
27 | 24 25 26 | 3jca | |
28 | 16 | 3ad2ant1 | |
29 | simp2r | |
|
30 | 28 29 | jca | |
31 | simp13l | |
|
32 | simp13r | |
|
33 | 13 | 3ad2ant1 | |
34 | simp3l1 | |
|
35 | 32 33 34 | 3jca | |
36 | 17 | 3ad2ant1 | |
37 | simp3r1 | |
|
38 | 36 37 | jca | |
39 | simp3r3 | |
|
40 | 39 | necomd | |
41 | simp3r2 | |
|
42 | simp3l2 | |
|
43 | 40 41 42 | 3jca | |
44 | simp3l3 | |
|
45 | 44 | necomd | |
46 | 1 2 3 4 5 6 7 8 9 10 | cdlemk27-3 | |
47 | 23 27 30 31 35 38 43 45 46 | syl332anc | |
48 | 47 | 3exp | |
49 | 48 | ralrimivv | |
50 | neeq1 | |
|
51 | fveq2 | |
|
52 | 51 | neeq1d | |
53 | 51 | neeq1d | |
54 | 50 52 53 | 3anbi123d | |
55 | oveq1 | |
|
56 | 54 55 | reusv3 | |
57 | 56 | biimpd | |
58 | 22 49 57 | sylc | |