Metamath Proof Explorer


Theorem cdlemk28-3

Description: Part of proof of Lemma K of Crawley p. 118. (Contributed by NM, 14-Jul-2013)

Ref Expression
Hypotheses cdlemk3.b B=BaseK
cdlemk3.l ˙=K
cdlemk3.j ˙=joinK
cdlemk3.m ˙=meetK
cdlemk3.a A=AtomsK
cdlemk3.h H=LHypK
cdlemk3.t T=LTrnKW
cdlemk3.r R=trLKW
cdlemk3.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
cdlemk3.u1 Y=dT,eTιjT|jP=P˙Re˙SdP˙Red-1
Assertion cdlemk28-3 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNzTbTbIBRbRFRbRGz=bYG

Proof

Step Hyp Ref Expression
1 cdlemk3.b B=BaseK
2 cdlemk3.l ˙=K
3 cdlemk3.j ˙=joinK
4 cdlemk3.m ˙=meetK
5 cdlemk3.a A=AtomsK
6 cdlemk3.h H=LHypK
7 cdlemk3.t T=LTrnKW
8 cdlemk3.r R=trLKW
9 cdlemk3.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
10 cdlemk3.u1 Y=dT,eTιjT|jP=P˙Re˙SdP˙Red-1
11 simp1 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNKHLWH
12 simp21l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNFT
13 simp21r KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNFIB
14 simp23 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNNT
15 12 13 14 3jca KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNFTFIBNT
16 simp22l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNGT
17 simp22r KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNGIB
18 simp3r KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNRF=RN
19 16 17 18 3jca KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNGTGIBRF=RN
20 simp3l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNPA¬P˙W
21 1 2 3 4 5 6 7 8 9 10 cdlemk26b-3 KHLWHFTFIBNTGTGIBRF=RNPA¬P˙WbTbIBRbRFRbRGbYGT
22 11 15 19 20 21 syl31anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGbYGT
23 simp11 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGKHLWH
24 12 3ad2ant1 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGFT
25 simp2l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGbT
26 simp123 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGNT
27 24 25 26 3jca KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGFTbTNT
28 16 3ad2ant1 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGGT
29 simp2r KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGaT
30 28 29 jca KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGGTaT
31 simp13l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGPA¬P˙W
32 simp13r KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGRF=RN
33 13 3ad2ant1 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGFIB
34 simp3l1 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGbIB
35 32 33 34 3jca KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGRF=RNFIBbIB
36 17 3ad2ant1 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGGIB
37 simp3r1 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGaIB
38 36 37 jca KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGGIBaIB
39 simp3r3 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGRaRG
40 39 necomd KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGRGRa
41 simp3r2 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGRaRF
42 simp3l2 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGRbRF
43 40 41 42 3jca KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGRGRaRaRFRbRF
44 simp3l3 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGRbRG
45 44 necomd KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGRGRb
46 1 2 3 4 5 6 7 8 9 10 cdlemk27-3 KHLWHFTbTNTGTaTPA¬P˙WRF=RNFIBbIBGIBaIBRGRaRaRFRbRFRGRbbYG=aYG
47 23 27 30 31 35 38 43 45 46 syl332anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGbYG=aYG
48 47 3exp KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGbYG=aYG
49 48 ralrimivv KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTaTbIBRbRFRbRGaIBRaRFRaRGbYG=aYG
50 neeq1 b=abIBaIB
51 fveq2 b=aRb=Ra
52 51 neeq1d b=aRbRFRaRF
53 51 neeq1d b=aRbRGRaRG
54 50 52 53 3anbi123d b=abIBRbRFRbRGaIBRaRFRaRG
55 oveq1 b=abYG=aYG
56 54 55 reusv3 bTbIBRbRFRbRGbYGTbTaTbIBRbRFRbRGaIBRaRFRaRGbYG=aYGzTbTbIBRbRFRbRGz=bYG
57 56 biimpd bTbIBRbRFRbRGbYGTbTaTbIBRbRFRbRGaIBRaRFRaRGbYG=aYGzTbTbIBRbRFRbRGz=bYG
58 22 49 57 sylc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNzTbTbIBRbRFRbRGz=bYG