| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemk3.b |
|
| 2 |
|
cdlemk3.l |
|
| 3 |
|
cdlemk3.j |
|
| 4 |
|
cdlemk3.m |
|
| 5 |
|
cdlemk3.a |
|
| 6 |
|
cdlemk3.h |
|
| 7 |
|
cdlemk3.t |
|
| 8 |
|
cdlemk3.r |
|
| 9 |
|
cdlemk3.s |
|
| 10 |
|
cdlemk3.u1 |
|
| 11 |
|
simp1 |
|
| 12 |
|
simp21l |
|
| 13 |
|
simp21r |
|
| 14 |
|
simp23 |
|
| 15 |
12 13 14
|
3jca |
|
| 16 |
|
simp22l |
|
| 17 |
|
simp22r |
|
| 18 |
|
simp3r |
|
| 19 |
16 17 18
|
3jca |
|
| 20 |
|
simp3l |
|
| 21 |
1 2 3 4 5 6 7 8 9 10
|
cdlemk26b-3 |
|
| 22 |
11 15 19 20 21
|
syl31anc |
|
| 23 |
|
simp11 |
|
| 24 |
12
|
3ad2ant1 |
|
| 25 |
|
simp2l |
|
| 26 |
|
simp123 |
|
| 27 |
24 25 26
|
3jca |
|
| 28 |
16
|
3ad2ant1 |
|
| 29 |
|
simp2r |
|
| 30 |
28 29
|
jca |
|
| 31 |
|
simp13l |
|
| 32 |
|
simp13r |
|
| 33 |
13
|
3ad2ant1 |
|
| 34 |
|
simp3l1 |
|
| 35 |
32 33 34
|
3jca |
|
| 36 |
17
|
3ad2ant1 |
|
| 37 |
|
simp3r1 |
|
| 38 |
36 37
|
jca |
|
| 39 |
|
simp3r3 |
|
| 40 |
39
|
necomd |
|
| 41 |
|
simp3r2 |
|
| 42 |
|
simp3l2 |
|
| 43 |
40 41 42
|
3jca |
|
| 44 |
|
simp3l3 |
|
| 45 |
44
|
necomd |
|
| 46 |
1 2 3 4 5 6 7 8 9 10
|
cdlemk27-3 |
|
| 47 |
23 27 30 31 35 38 43 45 46
|
syl332anc |
|
| 48 |
47
|
3exp |
|
| 49 |
48
|
ralrimivv |
|
| 50 |
|
neeq1 |
|
| 51 |
|
fveq2 |
|
| 52 |
51
|
neeq1d |
|
| 53 |
51
|
neeq1d |
|
| 54 |
50 52 53
|
3anbi123d |
|
| 55 |
|
oveq1 |
|
| 56 |
54 55
|
reusv3 |
|
| 57 |
56
|
biimpd |
|
| 58 |
22 49 57
|
sylc |
|