Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk3.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemk3.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemk3.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemk3.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdlemk3.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdlemk3.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdlemk3.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemk3.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
cdlemk3.s |
⊢ 𝑆 = ( 𝑓 ∈ 𝑇 ↦ ( ℩ 𝑖 ∈ 𝑇 ( 𝑖 ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑓 ) ) ∧ ( ( 𝑁 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑓 ∘ ◡ 𝐹 ) ) ) ) ) ) |
10 |
|
cdlemk3.u1 |
⊢ 𝑌 = ( 𝑑 ∈ 𝑇 , 𝑒 ∈ 𝑇 ↦ ( ℩ 𝑗 ∈ 𝑇 ( 𝑗 ‘ 𝑃 ) = ( ( 𝑃 ∨ ( 𝑅 ‘ 𝑒 ) ) ∧ ( ( ( 𝑆 ‘ 𝑑 ) ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑒 ∘ ◡ 𝑑 ) ) ) ) ) ) |
11 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
simp21l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) → 𝐹 ∈ 𝑇 ) |
13 |
|
simp21r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) → 𝐹 ≠ ( I ↾ 𝐵 ) ) |
14 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) → 𝑁 ∈ 𝑇 ) |
15 |
12 13 14
|
3jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) → ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁 ∈ 𝑇 ) ) |
16 |
|
simp22l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) → 𝐺 ∈ 𝑇 ) |
17 |
|
simp22r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) → 𝐺 ≠ ( I ↾ 𝐵 ) ) |
18 |
|
simp3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) → ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) |
19 |
16 17 18
|
3jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) → ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) |
20 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
21 |
1 2 3 4 5 6 7 8 9 10
|
cdlemk26b-3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ∃ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑏 𝑌 𝐺 ) ∈ 𝑇 ) ) |
22 |
11 15 19 20 21
|
syl31anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) → ∃ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑏 𝑌 𝐺 ) ∈ 𝑇 ) ) |
23 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ∧ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
24 |
12
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ∧ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → 𝐹 ∈ 𝑇 ) |
25 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ∧ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → 𝑏 ∈ 𝑇 ) |
26 |
|
simp123 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ∧ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → 𝑁 ∈ 𝑇 ) |
27 |
24 25 26
|
3jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ∧ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → ( 𝐹 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ) |
28 |
16
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ∧ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → 𝐺 ∈ 𝑇 ) |
29 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ∧ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → 𝑎 ∈ 𝑇 ) |
30 |
28 29
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ∧ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → ( 𝐺 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ) |
31 |
|
simp13l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ∧ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
32 |
|
simp13r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ∧ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) |
33 |
13
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ∧ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → 𝐹 ≠ ( I ↾ 𝐵 ) ) |
34 |
|
simp3l1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ∧ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → 𝑏 ≠ ( I ↾ 𝐵 ) ) |
35 |
32 33 34
|
3jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ∧ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → ( ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ) ) |
36 |
17
|
3ad2ant1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ∧ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → 𝐺 ≠ ( I ↾ 𝐵 ) ) |
37 |
|
simp3r1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ∧ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → 𝑎 ≠ ( I ↾ 𝐵 ) ) |
38 |
36 37
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ∧ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → ( 𝐺 ≠ ( I ↾ 𝐵 ) ∧ 𝑎 ≠ ( I ↾ 𝐵 ) ) ) |
39 |
|
simp3r3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ∧ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) |
40 |
39
|
necomd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ∧ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑎 ) ) |
41 |
|
simp3r2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ∧ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ) |
42 |
|
simp3l2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ∧ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ) |
43 |
40 41 42
|
3jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ∧ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑎 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) |
44 |
|
simp3l3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ∧ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) |
45 |
44
|
necomd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ∧ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑏 ) ) |
46 |
1 2 3 4 5 6 7 8 9 10
|
cdlemk27-3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ≠ ( I ↾ 𝐵 ) ∧ 𝑎 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( ( ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑎 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ) ∧ ( 𝑅 ‘ 𝐺 ) ≠ ( 𝑅 ‘ 𝑏 ) ) ) → ( 𝑏 𝑌 𝐺 ) = ( 𝑎 𝑌 𝐺 ) ) |
47 |
23 27 30 31 35 38 43 45 46
|
syl332anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) ∧ ( 𝑏 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) ∧ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) → ( 𝑏 𝑌 𝐺 ) = ( 𝑎 𝑌 𝐺 ) ) |
48 |
47
|
3exp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) → ( ( 𝑏 ∈ 𝑇 ∧ 𝑎 ∈ 𝑇 ) → ( ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑏 𝑌 𝐺 ) = ( 𝑎 𝑌 𝐺 ) ) ) ) |
49 |
48
|
ralrimivv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) → ∀ 𝑏 ∈ 𝑇 ∀ 𝑎 ∈ 𝑇 ( ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑏 𝑌 𝐺 ) = ( 𝑎 𝑌 𝐺 ) ) ) |
50 |
|
neeq1 |
⊢ ( 𝑏 = 𝑎 → ( 𝑏 ≠ ( I ↾ 𝐵 ) ↔ 𝑎 ≠ ( I ↾ 𝐵 ) ) ) |
51 |
|
fveq2 |
⊢ ( 𝑏 = 𝑎 → ( 𝑅 ‘ 𝑏 ) = ( 𝑅 ‘ 𝑎 ) ) |
52 |
51
|
neeq1d |
⊢ ( 𝑏 = 𝑎 → ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ↔ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ) ) |
53 |
51
|
neeq1d |
⊢ ( 𝑏 = 𝑎 → ( ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ↔ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) |
54 |
50 52 53
|
3anbi123d |
⊢ ( 𝑏 = 𝑎 → ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ↔ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) ) |
55 |
|
oveq1 |
⊢ ( 𝑏 = 𝑎 → ( 𝑏 𝑌 𝐺 ) = ( 𝑎 𝑌 𝐺 ) ) |
56 |
54 55
|
reusv3 |
⊢ ( ∃ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑏 𝑌 𝐺 ) ∈ 𝑇 ) → ( ∀ 𝑏 ∈ 𝑇 ∀ 𝑎 ∈ 𝑇 ( ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑏 𝑌 𝐺 ) = ( 𝑎 𝑌 𝐺 ) ) ↔ ∃ 𝑧 ∈ 𝑇 ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → 𝑧 = ( 𝑏 𝑌 𝐺 ) ) ) ) |
57 |
56
|
biimpd |
⊢ ( ∃ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑏 𝑌 𝐺 ) ∈ 𝑇 ) → ( ∀ 𝑏 ∈ 𝑇 ∀ 𝑎 ∈ 𝑇 ( ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ∧ ( 𝑎 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑎 ) ≠ ( 𝑅 ‘ 𝐺 ) ) ) → ( 𝑏 𝑌 𝐺 ) = ( 𝑎 𝑌 𝐺 ) ) → ∃ 𝑧 ∈ 𝑇 ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → 𝑧 = ( 𝑏 𝑌 𝐺 ) ) ) ) |
58 |
22 49 57
|
sylc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁 ∈ 𝑇 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑅 ‘ 𝐹 ) = ( 𝑅 ‘ 𝑁 ) ) ) → ∃ 𝑧 ∈ 𝑇 ∀ 𝑏 ∈ 𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐹 ) ∧ ( 𝑅 ‘ 𝑏 ) ≠ ( 𝑅 ‘ 𝐺 ) ) → 𝑧 = ( 𝑏 𝑌 𝐺 ) ) ) |