Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk3.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk3.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk3.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk3.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemk3.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemk3.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemk3.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
|
cdlemk3.r |
|- R = ( ( trL ` K ) ` W ) |
9 |
|
cdlemk3.s |
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) |
10 |
|
cdlemk3.u1 |
|- Y = ( d e. T , e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( S ` d ) ` P ) .\/ ( R ` ( e o. `' d ) ) ) ) ) ) |
11 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> ( K e. HL /\ W e. H ) ) |
12 |
|
simp21l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> F e. T ) |
13 |
|
simp21r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> F =/= ( _I |` B ) ) |
14 |
|
simp23 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> N e. T ) |
15 |
12 13 14
|
3jca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) ) |
16 |
|
simp22l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> G e. T ) |
17 |
|
simp22r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> G =/= ( _I |` B ) ) |
18 |
|
simp3r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> ( R ` F ) = ( R ` N ) ) |
19 |
16 17 18
|
3jca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> ( G e. T /\ G =/= ( _I |` B ) /\ ( R ` F ) = ( R ` N ) ) ) |
20 |
|
simp3l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
21 |
1 2 3 4 5 6 7 8 9 10
|
cdlemk26b-3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( P e. A /\ -. P .<_ W ) ) -> E. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( b Y G ) e. T ) ) |
22 |
11 15 19 20 21
|
syl31anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> E. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( b Y G ) e. T ) ) |
23 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( b e. T /\ a e. T ) /\ ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
24 |
12
|
3ad2ant1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( b e. T /\ a e. T ) /\ ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) ) -> F e. T ) |
25 |
|
simp2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( b e. T /\ a e. T ) /\ ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) ) -> b e. T ) |
26 |
|
simp123 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( b e. T /\ a e. T ) /\ ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) ) -> N e. T ) |
27 |
24 25 26
|
3jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( b e. T /\ a e. T ) /\ ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) ) -> ( F e. T /\ b e. T /\ N e. T ) ) |
28 |
16
|
3ad2ant1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( b e. T /\ a e. T ) /\ ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) ) -> G e. T ) |
29 |
|
simp2r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( b e. T /\ a e. T ) /\ ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) ) -> a e. T ) |
30 |
28 29
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( b e. T /\ a e. T ) /\ ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) ) -> ( G e. T /\ a e. T ) ) |
31 |
|
simp13l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( b e. T /\ a e. T ) /\ ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
32 |
|
simp13r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( b e. T /\ a e. T ) /\ ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) ) -> ( R ` F ) = ( R ` N ) ) |
33 |
13
|
3ad2ant1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( b e. T /\ a e. T ) /\ ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) ) -> F =/= ( _I |` B ) ) |
34 |
|
simp3l1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( b e. T /\ a e. T ) /\ ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) ) -> b =/= ( _I |` B ) ) |
35 |
32 33 34
|
3jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( b e. T /\ a e. T ) /\ ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) ) -> ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) ) |
36 |
17
|
3ad2ant1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( b e. T /\ a e. T ) /\ ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) ) -> G =/= ( _I |` B ) ) |
37 |
|
simp3r1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( b e. T /\ a e. T ) /\ ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) ) -> a =/= ( _I |` B ) ) |
38 |
36 37
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( b e. T /\ a e. T ) /\ ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) ) -> ( G =/= ( _I |` B ) /\ a =/= ( _I |` B ) ) ) |
39 |
|
simp3r3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( b e. T /\ a e. T ) /\ ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) ) -> ( R ` a ) =/= ( R ` G ) ) |
40 |
39
|
necomd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( b e. T /\ a e. T ) /\ ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) ) -> ( R ` G ) =/= ( R ` a ) ) |
41 |
|
simp3r2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( b e. T /\ a e. T ) /\ ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) ) -> ( R ` a ) =/= ( R ` F ) ) |
42 |
|
simp3l2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( b e. T /\ a e. T ) /\ ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) ) -> ( R ` b ) =/= ( R ` F ) ) |
43 |
40 41 42
|
3jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( b e. T /\ a e. T ) /\ ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) ) -> ( ( R ` G ) =/= ( R ` a ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` F ) ) ) |
44 |
|
simp3l3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( b e. T /\ a e. T ) /\ ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) ) -> ( R ` b ) =/= ( R ` G ) ) |
45 |
44
|
necomd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( b e. T /\ a e. T ) /\ ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) ) -> ( R ` G ) =/= ( R ` b ) ) |
46 |
1 2 3 4 5 6 7 8 9 10
|
cdlemk27-3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ b e. T /\ N e. T ) /\ ( G e. T /\ a e. T ) ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( R ` F ) = ( R ` N ) /\ F =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( G =/= ( _I |` B ) /\ a =/= ( _I |` B ) ) ) /\ ( ( ( R ` G ) =/= ( R ` a ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` F ) ) /\ ( R ` G ) =/= ( R ` b ) ) ) -> ( b Y G ) = ( a Y G ) ) |
47 |
23 27 30 31 35 38 43 45 46
|
syl332anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) /\ ( b e. T /\ a e. T ) /\ ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) ) -> ( b Y G ) = ( a Y G ) ) |
48 |
47
|
3exp |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> ( ( b e. T /\ a e. T ) -> ( ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) -> ( b Y G ) = ( a Y G ) ) ) ) |
49 |
48
|
ralrimivv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> A. b e. T A. a e. T ( ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) -> ( b Y G ) = ( a Y G ) ) ) |
50 |
|
neeq1 |
|- ( b = a -> ( b =/= ( _I |` B ) <-> a =/= ( _I |` B ) ) ) |
51 |
|
fveq2 |
|- ( b = a -> ( R ` b ) = ( R ` a ) ) |
52 |
51
|
neeq1d |
|- ( b = a -> ( ( R ` b ) =/= ( R ` F ) <-> ( R ` a ) =/= ( R ` F ) ) ) |
53 |
51
|
neeq1d |
|- ( b = a -> ( ( R ` b ) =/= ( R ` G ) <-> ( R ` a ) =/= ( R ` G ) ) ) |
54 |
50 52 53
|
3anbi123d |
|- ( b = a -> ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) <-> ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) ) |
55 |
|
oveq1 |
|- ( b = a -> ( b Y G ) = ( a Y G ) ) |
56 |
54 55
|
reusv3 |
|- ( E. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( b Y G ) e. T ) -> ( A. b e. T A. a e. T ( ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) -> ( b Y G ) = ( a Y G ) ) <-> E. z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( b Y G ) ) ) ) |
57 |
56
|
biimpd |
|- ( E. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( b Y G ) e. T ) -> ( A. b e. T A. a e. T ( ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( a =/= ( _I |` B ) /\ ( R ` a ) =/= ( R ` F ) /\ ( R ` a ) =/= ( R ` G ) ) ) -> ( b Y G ) = ( a Y G ) ) -> E. z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( b Y G ) ) ) ) |
58 |
22 49 57
|
sylc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( F e. T /\ F =/= ( _I |` B ) ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ N e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) ) -> E. z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( b Y G ) ) ) |