Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk3.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk3.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk3.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk3.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemk3.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemk3.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemk3.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
|
cdlemk3.r |
|- R = ( ( trL ` K ) ` W ) |
9 |
|
cdlemk3.s |
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) |
10 |
|
cdlemk3.u1 |
|- Y = ( d e. T , e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( ( S ` d ) ` P ) .\/ ( R ` ( e o. `' d ) ) ) ) ) ) |
11 |
|
cdlemk3.x |
|- X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( b Y G ) ) ) |
12 |
|
fveq1 |
|- ( z = ( b Y G ) -> ( z ` P ) = ( ( b Y G ) ` P ) ) |
13 |
|
simpl11 |
|- ( ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) /\ ( z ` P ) = ( ( b Y G ) ` P ) ) -> K e. HL ) |
14 |
|
simpl12 |
|- ( ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) /\ ( z ` P ) = ( ( b Y G ) ` P ) ) -> W e. H ) |
15 |
13 14
|
jca |
|- ( ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) /\ ( z ` P ) = ( ( b Y G ) ` P ) ) -> ( K e. HL /\ W e. H ) ) |
16 |
|
simpl31 |
|- ( ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) /\ ( z ` P ) = ( ( b Y G ) ` P ) ) -> z e. T ) |
17 |
|
simp11 |
|- ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> K e. HL ) |
18 |
|
simp12 |
|- ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> W e. H ) |
19 |
17 18
|
jca |
|- ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> ( K e. HL /\ W e. H ) ) |
20 |
|
simp13 |
|- ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> ( R ` F ) = ( R ` N ) ) |
21 |
|
simp22l |
|- ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> G e. T ) |
22 |
19 20 21
|
3jca |
|- ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) /\ G e. T ) ) |
23 |
22
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) /\ ( z ` P ) = ( ( b Y G ) ` P ) ) -> ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) /\ G e. T ) ) |
24 |
|
simp211 |
|- ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> F e. T ) |
25 |
|
simp32 |
|- ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> b e. T ) |
26 |
|
simp213 |
|- ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> N e. T ) |
27 |
24 25 26
|
3jca |
|- ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> ( F e. T /\ b e. T /\ N e. T ) ) |
28 |
27
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) /\ ( z ` P ) = ( ( b Y G ) ` P ) ) -> ( F e. T /\ b e. T /\ N e. T ) ) |
29 |
|
simp332 |
|- ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> ( R ` b ) =/= ( R ` F ) ) |
30 |
|
simp333 |
|- ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> ( R ` b ) =/= ( R ` G ) ) |
31 |
29 30
|
jca |
|- ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) |
32 |
|
simp212 |
|- ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> F =/= ( _I |` B ) ) |
33 |
|
simp22r |
|- ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> G =/= ( _I |` B ) ) |
34 |
|
simp331 |
|- ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> b =/= ( _I |` B ) ) |
35 |
32 33 34
|
3jca |
|- ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) ) |
36 |
|
simp23 |
|- ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
37 |
31 35 36
|
3jca |
|- ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> ( ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) |
38 |
37
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) /\ ( z ` P ) = ( ( b Y G ) ` P ) ) -> ( ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) |
39 |
1 2 3 4 5 6 7 8 9 10
|
cdlemkuel-3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R ` F ) = ( R ` N ) /\ G e. T ) /\ ( F e. T /\ b e. T /\ N e. T ) /\ ( ( ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ b =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( b Y G ) e. T ) |
40 |
23 28 38 39
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) /\ ( z ` P ) = ( ( b Y G ) ` P ) ) -> ( b Y G ) e. T ) |
41 |
|
simpl23 |
|- ( ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) /\ ( z ` P ) = ( ( b Y G ) ` P ) ) -> ( P e. A /\ -. P .<_ W ) ) |
42 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) /\ ( z ` P ) = ( ( b Y G ) ` P ) ) -> ( z ` P ) = ( ( b Y G ) ` P ) ) |
43 |
2 5 6 7
|
cdlemd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ z e. T /\ ( b Y G ) e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( z ` P ) = ( ( b Y G ) ` P ) ) -> z = ( b Y G ) ) |
44 |
15 16 40 41 42 43
|
syl311anc |
|- ( ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) /\ ( z ` P ) = ( ( b Y G ) ` P ) ) -> z = ( b Y G ) ) |
45 |
44
|
ex |
|- ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> ( ( z ` P ) = ( ( b Y G ) ` P ) -> z = ( b Y G ) ) ) |
46 |
12 45
|
impbid2 |
|- ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) ) -> ( z = ( b Y G ) <-> ( z ` P ) = ( ( b Y G ) ` P ) ) ) |
47 |
46
|
3expia |
|- ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( z e. T /\ b e. T /\ ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) ) -> ( z = ( b Y G ) <-> ( z ` P ) = ( ( b Y G ) ` P ) ) ) ) |
48 |
47
|
3expd |
|- ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( z e. T -> ( b e. T -> ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z = ( b Y G ) <-> ( z ` P ) = ( ( b Y G ) ` P ) ) ) ) ) ) |
49 |
48
|
imp31 |
|- ( ( ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) /\ z e. T ) /\ b e. T ) -> ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z = ( b Y G ) <-> ( z ` P ) = ( ( b Y G ) ` P ) ) ) ) |
50 |
49
|
pm5.74d |
|- ( ( ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) /\ z e. T ) /\ b e. T ) -> ( ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( b Y G ) ) <-> ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = ( ( b Y G ) ` P ) ) ) ) |
51 |
50
|
ralbidva |
|- ( ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) /\ z e. T ) -> ( A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( b Y G ) ) <-> A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = ( ( b Y G ) ` P ) ) ) ) |
52 |
51
|
riotabidva |
|- ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> z = ( b Y G ) ) ) = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = ( ( b Y G ) ` P ) ) ) ) |
53 |
11 52
|
eqtrid |
|- ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ F =/= ( _I |` B ) /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> X = ( iota_ z e. T A. b e. T ( ( b =/= ( _I |` B ) /\ ( R ` b ) =/= ( R ` F ) /\ ( R ` b ) =/= ( R ` G ) ) -> ( z ` P ) = ( ( b Y G ) ` P ) ) ) ) |