Metamath Proof Explorer


Theorem cdlemk33N

Description: Part of proof of Lemma K of Crawley p. 118. TODO: fix comment. Part of attempt to simplify hypotheses. TODO: not needed, is embodied in cdlemk34 . (Contributed by NM, 18-Jul-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemk3.b 𝐵 = ( Base ‘ 𝐾 )
cdlemk3.l = ( le ‘ 𝐾 )
cdlemk3.j = ( join ‘ 𝐾 )
cdlemk3.m = ( meet ‘ 𝐾 )
cdlemk3.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemk3.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemk3.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemk3.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemk3.s 𝑆 = ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) )
cdlemk3.u1 𝑌 = ( 𝑑𝑇 , 𝑒𝑇 ↦ ( 𝑗𝑇 ( 𝑗𝑃 ) = ( ( 𝑃 ( 𝑅𝑒 ) ) ( ( ( 𝑆𝑑 ) ‘ 𝑃 ) ( 𝑅 ‘ ( 𝑒 𝑑 ) ) ) ) ) )
cdlemk3.x 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → 𝑧 = ( 𝑏 𝑌 𝐺 ) ) )
Assertion cdlemk33N ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ) → 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → ( 𝑧𝑃 ) = ( ( 𝑏 𝑌 𝐺 ) ‘ 𝑃 ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemk3.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemk3.l = ( le ‘ 𝐾 )
3 cdlemk3.j = ( join ‘ 𝐾 )
4 cdlemk3.m = ( meet ‘ 𝐾 )
5 cdlemk3.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemk3.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemk3.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemk3.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
9 cdlemk3.s 𝑆 = ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) )
10 cdlemk3.u1 𝑌 = ( 𝑑𝑇 , 𝑒𝑇 ↦ ( 𝑗𝑇 ( 𝑗𝑃 ) = ( ( 𝑃 ( 𝑅𝑒 ) ) ( ( ( 𝑆𝑑 ) ‘ 𝑃 ) ( 𝑅 ‘ ( 𝑒 𝑑 ) ) ) ) ) )
11 cdlemk3.x 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → 𝑧 = ( 𝑏 𝑌 𝐺 ) ) )
12 fveq1 ( 𝑧 = ( 𝑏 𝑌 𝐺 ) → ( 𝑧𝑃 ) = ( ( 𝑏 𝑌 𝐺 ) ‘ 𝑃 ) )
13 simpl11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) ∧ ( 𝑧𝑃 ) = ( ( 𝑏 𝑌 𝐺 ) ‘ 𝑃 ) ) → 𝐾 ∈ HL )
14 simpl12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) ∧ ( 𝑧𝑃 ) = ( ( 𝑏 𝑌 𝐺 ) ‘ 𝑃 ) ) → 𝑊𝐻 )
15 13 14 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) ∧ ( 𝑧𝑃 ) = ( ( 𝑏 𝑌 𝐺 ) ‘ 𝑃 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
16 simpl31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) ∧ ( 𝑧𝑃 ) = ( ( 𝑏 𝑌 𝐺 ) ‘ 𝑃 ) ) → 𝑧𝑇 )
17 simp11 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → 𝐾 ∈ HL )
18 simp12 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → 𝑊𝐻 )
19 17 18 jca ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
20 simp13 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → ( 𝑅𝐹 ) = ( 𝑅𝑁 ) )
21 simp22l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → 𝐺𝑇 )
22 19 20 21 3jca ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ∧ 𝐺𝑇 ) )
23 22 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) ∧ ( 𝑧𝑃 ) = ( ( 𝑏 𝑌 𝐺 ) ‘ 𝑃 ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ∧ 𝐺𝑇 ) )
24 simp211 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → 𝐹𝑇 )
25 simp32 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → 𝑏𝑇 )
26 simp213 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → 𝑁𝑇 )
27 24 25 26 3jca ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → ( 𝐹𝑇𝑏𝑇𝑁𝑇 ) )
28 27 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) ∧ ( 𝑧𝑃 ) = ( ( 𝑏 𝑌 𝐺 ) ‘ 𝑃 ) ) → ( 𝐹𝑇𝑏𝑇𝑁𝑇 ) )
29 simp332 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) )
30 simp333 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) )
31 29 30 jca ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → ( ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) )
32 simp212 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → 𝐹 ≠ ( I ↾ 𝐵 ) )
33 simp22r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → 𝐺 ≠ ( I ↾ 𝐵 ) )
34 simp331 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → 𝑏 ≠ ( I ↾ 𝐵 ) )
35 32 33 34 3jca ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ) )
36 simp23 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
37 31 35 36 3jca ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → ( ( ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) )
38 37 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) ∧ ( 𝑧𝑃 ) = ( ( 𝑏 𝑌 𝐺 ) ‘ 𝑃 ) ) → ( ( ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) )
39 1 2 3 4 5 6 7 8 9 10 cdlemkuel-3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ∧ 𝐺𝑇 ) ∧ ( 𝐹𝑇𝑏𝑇𝑁𝑇 ) ∧ ( ( ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ 𝑏 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ) → ( 𝑏 𝑌 𝐺 ) ∈ 𝑇 )
40 23 28 38 39 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) ∧ ( 𝑧𝑃 ) = ( ( 𝑏 𝑌 𝐺 ) ‘ 𝑃 ) ) → ( 𝑏 𝑌 𝐺 ) ∈ 𝑇 )
41 simpl23 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) ∧ ( 𝑧𝑃 ) = ( ( 𝑏 𝑌 𝐺 ) ‘ 𝑃 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
42 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) ∧ ( 𝑧𝑃 ) = ( ( 𝑏 𝑌 𝐺 ) ‘ 𝑃 ) ) → ( 𝑧𝑃 ) = ( ( 𝑏 𝑌 𝐺 ) ‘ 𝑃 ) )
43 2 5 6 7 cdlemd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑧𝑇 ∧ ( 𝑏 𝑌 𝐺 ) ∈ 𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑧𝑃 ) = ( ( 𝑏 𝑌 𝐺 ) ‘ 𝑃 ) ) → 𝑧 = ( 𝑏 𝑌 𝐺 ) )
44 15 16 40 41 42 43 syl311anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) ∧ ( 𝑧𝑃 ) = ( ( 𝑏 𝑌 𝐺 ) ‘ 𝑃 ) ) → 𝑧 = ( 𝑏 𝑌 𝐺 ) )
45 44 ex ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → ( ( 𝑧𝑃 ) = ( ( 𝑏 𝑌 𝐺 ) ‘ 𝑃 ) → 𝑧 = ( 𝑏 𝑌 𝐺 ) ) )
46 12 45 impbid2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) ) → ( 𝑧 = ( 𝑏 𝑌 𝐺 ) ↔ ( 𝑧𝑃 ) = ( ( 𝑏 𝑌 𝐺 ) ‘ 𝑃 ) ) )
47 46 3expia ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ) → ( ( 𝑧𝑇𝑏𝑇 ∧ ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) ) → ( 𝑧 = ( 𝑏 𝑌 𝐺 ) ↔ ( 𝑧𝑃 ) = ( ( 𝑏 𝑌 𝐺 ) ‘ 𝑃 ) ) ) )
48 47 3expd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ) → ( 𝑧𝑇 → ( 𝑏𝑇 → ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → ( 𝑧 = ( 𝑏 𝑌 𝐺 ) ↔ ( 𝑧𝑃 ) = ( ( 𝑏 𝑌 𝐺 ) ‘ 𝑃 ) ) ) ) ) )
49 48 imp31 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ) ∧ 𝑧𝑇 ) ∧ 𝑏𝑇 ) → ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → ( 𝑧 = ( 𝑏 𝑌 𝐺 ) ↔ ( 𝑧𝑃 ) = ( ( 𝑏 𝑌 𝐺 ) ‘ 𝑃 ) ) ) )
50 49 pm5.74d ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ) ∧ 𝑧𝑇 ) ∧ 𝑏𝑇 ) → ( ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → 𝑧 = ( 𝑏 𝑌 𝐺 ) ) ↔ ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → ( 𝑧𝑃 ) = ( ( 𝑏 𝑌 𝐺 ) ‘ 𝑃 ) ) ) )
51 50 ralbidva ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ) ∧ 𝑧𝑇 ) → ( ∀ 𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → 𝑧 = ( 𝑏 𝑌 𝐺 ) ) ↔ ∀ 𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → ( 𝑧𝑃 ) = ( ( 𝑏 𝑌 𝐺 ) ‘ 𝑃 ) ) ) )
52 51 riotabidva ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ) → ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → 𝑧 = ( 𝑏 𝑌 𝐺 ) ) ) = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → ( 𝑧𝑃 ) = ( ( 𝑏 𝑌 𝐺 ) ‘ 𝑃 ) ) ) )
53 11 52 syl5eq ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝑁𝑇 ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ) → 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐺 ) ) → ( 𝑧𝑃 ) = ( ( 𝑏 𝑌 𝐺 ) ‘ 𝑃 ) ) ) )