Step |
Hyp |
Ref |
Expression |
1 |
|
isch3 |
|- ( H e. CH <-> ( H e. SH /\ A. f e. Cauchy ( f : NN --> H -> E. x e. H f ~~>v x ) ) ) |
2 |
1
|
simprbi |
|- ( H e. CH -> A. f e. Cauchy ( f : NN --> H -> E. x e. H f ~~>v x ) ) |
3 |
|
feq1 |
|- ( f = F -> ( f : NN --> H <-> F : NN --> H ) ) |
4 |
|
breq1 |
|- ( f = F -> ( f ~~>v x <-> F ~~>v x ) ) |
5 |
4
|
rexbidv |
|- ( f = F -> ( E. x e. H f ~~>v x <-> E. x e. H F ~~>v x ) ) |
6 |
3 5
|
imbi12d |
|- ( f = F -> ( ( f : NN --> H -> E. x e. H f ~~>v x ) <-> ( F : NN --> H -> E. x e. H F ~~>v x ) ) ) |
7 |
6
|
rspccv |
|- ( A. f e. Cauchy ( f : NN --> H -> E. x e. H f ~~>v x ) -> ( F e. Cauchy -> ( F : NN --> H -> E. x e. H F ~~>v x ) ) ) |
8 |
2 7
|
syl |
|- ( H e. CH -> ( F e. Cauchy -> ( F : NN --> H -> E. x e. H F ~~>v x ) ) ) |
9 |
8
|
3imp |
|- ( ( H e. CH /\ F e. Cauchy /\ F : NN --> H ) -> E. x e. H F ~~>v x ) |