| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isch2 |
|- ( H e. CH <-> ( H e. SH /\ A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) ) |
| 2 |
|
ax-hcompl |
|- ( f e. Cauchy -> E. x e. ~H f ~~>v x ) |
| 3 |
|
rexex |
|- ( E. x e. ~H f ~~>v x -> E. x f ~~>v x ) |
| 4 |
2 3
|
syl |
|- ( f e. Cauchy -> E. x f ~~>v x ) |
| 5 |
|
19.29 |
|- ( ( A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ E. x f ~~>v x ) -> E. x ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) ) |
| 6 |
4 5
|
sylan2 |
|- ( ( A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f e. Cauchy ) -> E. x ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) ) |
| 7 |
|
id |
|- ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) -> ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) |
| 8 |
7
|
imp |
|- ( ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ ( f : NN --> H /\ f ~~>v x ) ) -> x e. H ) |
| 9 |
8
|
an12s |
|- ( ( f : NN --> H /\ ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) ) -> x e. H ) |
| 10 |
|
simprr |
|- ( ( f : NN --> H /\ ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) ) -> f ~~>v x ) |
| 11 |
9 10
|
jca |
|- ( ( f : NN --> H /\ ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) ) -> ( x e. H /\ f ~~>v x ) ) |
| 12 |
11
|
ex |
|- ( f : NN --> H -> ( ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) -> ( x e. H /\ f ~~>v x ) ) ) |
| 13 |
12
|
eximdv |
|- ( f : NN --> H -> ( E. x ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) -> E. x ( x e. H /\ f ~~>v x ) ) ) |
| 14 |
13
|
com12 |
|- ( E. x ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) -> ( f : NN --> H -> E. x ( x e. H /\ f ~~>v x ) ) ) |
| 15 |
|
df-rex |
|- ( E. x e. H f ~~>v x <-> E. x ( x e. H /\ f ~~>v x ) ) |
| 16 |
14 15
|
imbitrrdi |
|- ( E. x ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f ~~>v x ) -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) |
| 17 |
6 16
|
syl |
|- ( ( A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) /\ f e. Cauchy ) -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) |
| 18 |
17
|
ex |
|- ( A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) -> ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) ) |
| 19 |
|
nfv |
|- F/ x f e. Cauchy |
| 20 |
|
nfv |
|- F/ x f : NN --> H |
| 21 |
|
nfre1 |
|- F/ x E. x e. H f ~~>v x |
| 22 |
20 21
|
nfim |
|- F/ x ( f : NN --> H -> E. x e. H f ~~>v x ) |
| 23 |
19 22
|
nfim |
|- F/ x ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) |
| 24 |
|
bi2.04 |
|- ( ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) <-> ( f : NN --> H -> ( f e. Cauchy -> E. x e. H f ~~>v x ) ) ) |
| 25 |
|
hlimcaui |
|- ( f ~~>v x -> f e. Cauchy ) |
| 26 |
25
|
imim1i |
|- ( ( f e. Cauchy -> E. x e. H f ~~>v x ) -> ( f ~~>v x -> E. x e. H f ~~>v x ) ) |
| 27 |
|
rexex |
|- ( E. x e. H f ~~>v x -> E. x f ~~>v x ) |
| 28 |
|
hlimeui |
|- ( E. x f ~~>v x <-> E! x f ~~>v x ) |
| 29 |
27 28
|
sylib |
|- ( E. x e. H f ~~>v x -> E! x f ~~>v x ) |
| 30 |
|
exancom |
|- ( E. x ( x e. H /\ f ~~>v x ) <-> E. x ( f ~~>v x /\ x e. H ) ) |
| 31 |
15 30
|
sylbb |
|- ( E. x e. H f ~~>v x -> E. x ( f ~~>v x /\ x e. H ) ) |
| 32 |
|
eupick |
|- ( ( E! x f ~~>v x /\ E. x ( f ~~>v x /\ x e. H ) ) -> ( f ~~>v x -> x e. H ) ) |
| 33 |
29 31 32
|
syl2anc |
|- ( E. x e. H f ~~>v x -> ( f ~~>v x -> x e. H ) ) |
| 34 |
26 33
|
syli |
|- ( ( f e. Cauchy -> E. x e. H f ~~>v x ) -> ( f ~~>v x -> x e. H ) ) |
| 35 |
34
|
imim2i |
|- ( ( f : NN --> H -> ( f e. Cauchy -> E. x e. H f ~~>v x ) ) -> ( f : NN --> H -> ( f ~~>v x -> x e. H ) ) ) |
| 36 |
24 35
|
sylbi |
|- ( ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) -> ( f : NN --> H -> ( f ~~>v x -> x e. H ) ) ) |
| 37 |
36
|
impd |
|- ( ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) -> ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) |
| 38 |
23 37
|
alrimi |
|- ( ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) -> A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) |
| 39 |
18 38
|
impbii |
|- ( A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) <-> ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) ) |
| 40 |
39
|
albii |
|- ( A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) <-> A. f ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) ) |
| 41 |
|
df-ral |
|- ( A. f e. Cauchy ( f : NN --> H -> E. x e. H f ~~>v x ) <-> A. f ( f e. Cauchy -> ( f : NN --> H -> E. x e. H f ~~>v x ) ) ) |
| 42 |
40 41
|
bitr4i |
|- ( A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) <-> A. f e. Cauchy ( f : NN --> H -> E. x e. H f ~~>v x ) ) |
| 43 |
42
|
anbi2i |
|- ( ( H e. SH /\ A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) <-> ( H e. SH /\ A. f e. Cauchy ( f : NN --> H -> E. x e. H f ~~>v x ) ) ) |
| 44 |
1 43
|
bitri |
|- ( H e. CH <-> ( H e. SH /\ A. f e. Cauchy ( f : NN --> H -> E. x e. H f ~~>v x ) ) ) |