Description: A Hilbert subspace is closed iff it is complete. A complete subspace is one in which every Cauchy sequence of vectors in the subspace converges to a member of the subspace (Definition of complete subspace in Beran p. 96). Remark 3.12 of Beran p. 107. (Contributed by NM, 24-Dec-2001) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | isch3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isch2 | |
|
2 | ax-hcompl | |
|
3 | rexex | |
|
4 | 2 3 | syl | |
5 | 19.29 | |
|
6 | 4 5 | sylan2 | |
7 | id | |
|
8 | 7 | imp | |
9 | 8 | an12s | |
10 | simprr | |
|
11 | 9 10 | jca | |
12 | 11 | ex | |
13 | 12 | eximdv | |
14 | 13 | com12 | |
15 | df-rex | |
|
16 | 14 15 | imbitrrdi | |
17 | 6 16 | syl | |
18 | 17 | ex | |
19 | nfv | |
|
20 | nfv | |
|
21 | nfre1 | |
|
22 | 20 21 | nfim | |
23 | 19 22 | nfim | |
24 | bi2.04 | |
|
25 | hlimcaui | |
|
26 | 25 | imim1i | |
27 | rexex | |
|
28 | hlimeui | |
|
29 | 27 28 | sylib | |
30 | exancom | |
|
31 | 15 30 | sylbb | |
32 | eupick | |
|
33 | 29 31 32 | syl2anc | |
34 | 26 33 | syli | |
35 | 34 | imim2i | |
36 | 24 35 | sylbi | |
37 | 36 | impd | |
38 | 23 37 | alrimi | |
39 | 18 38 | impbii | |
40 | 39 | albii | |
41 | df-ral | |
|
42 | 40 41 | bitr4i | |
43 | 42 | anbi2i | |
44 | 1 43 | bitri | |