| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
| 2 |
|
eqid |
|- ( IndMet ` <. <. +h , .h >. , normh >. ) = ( IndMet ` <. <. +h , .h >. , normh >. ) |
| 3 |
|
eqid |
|- ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) = ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) |
| 4 |
1 2 3
|
hhlm |
|- ~~>v = ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) |
| 5 |
|
resss |
|- ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) C_ ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |
| 6 |
4 5
|
eqsstri |
|- ~~>v C_ ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |
| 7 |
|
dmss |
|- ( ~~>v C_ ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) -> dom ~~>v C_ dom ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) ) |
| 8 |
6 7
|
ax-mp |
|- dom ~~>v C_ dom ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |
| 9 |
1 2
|
hhxmet |
|- ( IndMet ` <. <. +h , .h >. , normh >. ) e. ( *Met ` ~H ) |
| 10 |
3
|
lmcau |
|- ( ( IndMet ` <. <. +h , .h >. , normh >. ) e. ( *Met ` ~H ) -> dom ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) C_ ( Cau ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |
| 11 |
9 10
|
ax-mp |
|- dom ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) C_ ( Cau ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) |
| 12 |
8 11
|
sstri |
|- dom ~~>v C_ ( Cau ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) |
| 13 |
4
|
dmeqi |
|- dom ~~>v = dom ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) |
| 14 |
|
dmres |
|- dom ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) = ( ( ~H ^m NN ) i^i dom ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) ) |
| 15 |
13 14
|
eqtri |
|- dom ~~>v = ( ( ~H ^m NN ) i^i dom ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) ) |
| 16 |
|
inss1 |
|- ( ( ~H ^m NN ) i^i dom ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) ) C_ ( ~H ^m NN ) |
| 17 |
15 16
|
eqsstri |
|- dom ~~>v C_ ( ~H ^m NN ) |
| 18 |
12 17
|
ssini |
|- dom ~~>v C_ ( ( Cau ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) i^i ( ~H ^m NN ) ) |
| 19 |
1 2
|
hhcau |
|- Cauchy = ( ( Cau ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) i^i ( ~H ^m NN ) ) |
| 20 |
18 19
|
sseqtrri |
|- dom ~~>v C_ Cauchy |
| 21 |
|
relres |
|- Rel ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) |
| 22 |
4
|
releqi |
|- ( Rel ~~>v <-> Rel ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) ) |
| 23 |
21 22
|
mpbir |
|- Rel ~~>v |
| 24 |
23
|
releldmi |
|- ( F ~~>v A -> F e. dom ~~>v ) |
| 25 |
20 24
|
sselid |
|- ( F ~~>v A -> F e. Cauchy ) |