Metamath Proof Explorer


Theorem hlimcaui

Description: If a sequence in Hilbert space subset converges to a limit, it is a Cauchy sequence. (Contributed by NM, 17-Aug-1999) (Proof shortened by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Assertion hlimcaui ( 𝐹𝑣 𝐴𝐹 ∈ Cauchy )

Proof

Step Hyp Ref Expression
1 eqid ⟨ ⟨ + , · ⟩ , norm ⟩ = ⟨ ⟨ + , · ⟩ , norm
2 eqid ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) = ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
3 eqid ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) = ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) )
4 1 2 3 hhlm 𝑣 = ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) ) ↾ ( ℋ ↑m ℕ ) )
5 resss ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) ) ↾ ( ℋ ↑m ℕ ) ) ⊆ ( ⇝𝑡 ‘ ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) )
6 4 5 eqsstri 𝑣 ⊆ ( ⇝𝑡 ‘ ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) )
7 dmss ( ⇝𝑣 ⊆ ( ⇝𝑡 ‘ ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) ) → dom ⇝𝑣 ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) ) )
8 6 7 ax-mp dom ⇝𝑣 ⊆ dom ( ⇝𝑡 ‘ ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) )
9 1 2 hhxmet ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ∈ ( ∞Met ‘ ℋ )
10 3 lmcau ( ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ∈ ( ∞Met ‘ ℋ ) → dom ( ⇝𝑡 ‘ ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) ) ⊆ ( Cau ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) )
11 9 10 ax-mp dom ( ⇝𝑡 ‘ ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) ) ⊆ ( Cau ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) )
12 8 11 sstri dom ⇝𝑣 ⊆ ( Cau ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) )
13 4 dmeqi dom ⇝𝑣 = dom ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) ) ↾ ( ℋ ↑m ℕ ) )
14 dmres dom ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) ) ↾ ( ℋ ↑m ℕ ) ) = ( ( ℋ ↑m ℕ ) ∩ dom ( ⇝𝑡 ‘ ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) ) )
15 13 14 eqtri dom ⇝𝑣 = ( ( ℋ ↑m ℕ ) ∩ dom ( ⇝𝑡 ‘ ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) ) )
16 inss1 ( ( ℋ ↑m ℕ ) ∩ dom ( ⇝𝑡 ‘ ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) ) ) ⊆ ( ℋ ↑m ℕ )
17 15 16 eqsstri dom ⇝𝑣 ⊆ ( ℋ ↑m ℕ )
18 12 17 ssini dom ⇝𝑣 ⊆ ( ( Cau ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) ∩ ( ℋ ↑m ℕ ) )
19 1 2 hhcau Cauchy = ( ( Cau ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) ∩ ( ℋ ↑m ℕ ) )
20 18 19 sseqtrri dom ⇝𝑣 ⊆ Cauchy
21 relres Rel ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) ) ↾ ( ℋ ↑m ℕ ) )
22 4 releqi ( Rel ⇝𝑣 ↔ Rel ( ( ⇝𝑡 ‘ ( MetOpen ‘ ( IndMet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ ) ) ) ↾ ( ℋ ↑m ℕ ) ) )
23 21 22 mpbir Rel ⇝𝑣
24 23 releldmi ( 𝐹𝑣 𝐴𝐹 ∈ dom ⇝𝑣 )
25 20 24 sseldi ( 𝐹𝑣 𝐴𝐹 ∈ Cauchy )