Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
β’ β¨ β¨ +β , Β·β β© , normβ β© = β¨ β¨ +β , Β·β β© , normβ β© |
2 |
|
eqid |
β’ ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) = ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) |
3 |
|
eqid |
β’ ( MetOpen β ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) ) = ( MetOpen β ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) ) |
4 |
1 2 3
|
hhlm |
β’ βπ£ = ( ( βπ‘ β ( MetOpen β ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) ) ) βΎ ( β βm β ) ) |
5 |
|
resss |
β’ ( ( βπ‘ β ( MetOpen β ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) ) ) βΎ ( β βm β ) ) β ( βπ‘ β ( MetOpen β ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) ) ) |
6 |
4 5
|
eqsstri |
β’ βπ£ β ( βπ‘ β ( MetOpen β ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) ) ) |
7 |
|
dmss |
β’ ( βπ£ β ( βπ‘ β ( MetOpen β ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) ) ) β dom βπ£ β dom ( βπ‘ β ( MetOpen β ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) ) ) ) |
8 |
6 7
|
ax-mp |
β’ dom βπ£ β dom ( βπ‘ β ( MetOpen β ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) ) ) |
9 |
1 2
|
hhxmet |
β’ ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) β ( βMet β β ) |
10 |
3
|
lmcau |
β’ ( ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) β ( βMet β β ) β dom ( βπ‘ β ( MetOpen β ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) ) ) β ( Cau β ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) ) ) |
11 |
9 10
|
ax-mp |
β’ dom ( βπ‘ β ( MetOpen β ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) ) ) β ( Cau β ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) ) |
12 |
8 11
|
sstri |
β’ dom βπ£ β ( Cau β ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) ) |
13 |
4
|
dmeqi |
β’ dom βπ£ = dom ( ( βπ‘ β ( MetOpen β ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) ) ) βΎ ( β βm β ) ) |
14 |
|
dmres |
β’ dom ( ( βπ‘ β ( MetOpen β ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) ) ) βΎ ( β βm β ) ) = ( ( β βm β ) β© dom ( βπ‘ β ( MetOpen β ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) ) ) ) |
15 |
13 14
|
eqtri |
β’ dom βπ£ = ( ( β βm β ) β© dom ( βπ‘ β ( MetOpen β ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) ) ) ) |
16 |
|
inss1 |
β’ ( ( β βm β ) β© dom ( βπ‘ β ( MetOpen β ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) ) ) ) β ( β βm β ) |
17 |
15 16
|
eqsstri |
β’ dom βπ£ β ( β βm β ) |
18 |
12 17
|
ssini |
β’ dom βπ£ β ( ( Cau β ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) ) β© ( β βm β ) ) |
19 |
1 2
|
hhcau |
β’ Cauchy = ( ( Cau β ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) ) β© ( β βm β ) ) |
20 |
18 19
|
sseqtrri |
β’ dom βπ£ β Cauchy |
21 |
|
relres |
β’ Rel ( ( βπ‘ β ( MetOpen β ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) ) ) βΎ ( β βm β ) ) |
22 |
4
|
releqi |
β’ ( Rel βπ£ β Rel ( ( βπ‘ β ( MetOpen β ( IndMet β β¨ β¨ +β , Β·β β© , normβ β© ) ) ) βΎ ( β βm β ) ) ) |
23 |
21 22
|
mpbir |
β’ Rel βπ£ |
24 |
23
|
releldmi |
β’ ( πΉ βπ£ π΄ β πΉ β dom βπ£ ) |
25 |
20 24
|
sselid |
β’ ( πΉ βπ£ π΄ β πΉ β Cauchy ) |