| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmcau.1 |  |-  J = ( MetOpen ` D ) | 
						
							| 2 | 1 | methaus |  |-  ( D e. ( *Met ` X ) -> J e. Haus ) | 
						
							| 3 |  | lmfun |  |-  ( J e. Haus -> Fun ( ~~>t ` J ) ) | 
						
							| 4 |  | funfvbrb |  |-  ( Fun ( ~~>t ` J ) -> ( f e. dom ( ~~>t ` J ) <-> f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) ) | 
						
							| 5 | 2 3 4 | 3syl |  |-  ( D e. ( *Met ` X ) -> ( f e. dom ( ~~>t ` J ) <-> f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) ) | 
						
							| 6 |  | id |  |-  ( D e. ( *Met ` X ) -> D e. ( *Met ` X ) ) | 
						
							| 7 | 1 6 | lmmbr |  |-  ( D e. ( *Met ` X ) -> ( f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) <-> ( f e. ( X ^pm CC ) /\ ( ( ~~>t ` J ) ` f ) e. X /\ A. y e. RR+ E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) y ) ) ) ) | 
						
							| 8 | 7 | biimpa |  |-  ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) -> ( f e. ( X ^pm CC ) /\ ( ( ~~>t ` J ) ` f ) e. X /\ A. y e. RR+ E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) y ) ) ) | 
						
							| 9 | 8 | simp1d |  |-  ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) -> f e. ( X ^pm CC ) ) | 
						
							| 10 |  | simprr |  |-  ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) | 
						
							| 11 |  | simplll |  |-  ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> D e. ( *Met ` X ) ) | 
						
							| 12 | 8 | simp2d |  |-  ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) -> ( ( ~~>t ` J ) ` f ) e. X ) | 
						
							| 13 | 12 | ad2antrr |  |-  ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> ( ( ~~>t ` J ) ` f ) e. X ) | 
						
							| 14 |  | rpre |  |-  ( x e. RR+ -> x e. RR ) | 
						
							| 15 | 14 | ad2antlr |  |-  ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> x e. RR ) | 
						
							| 16 |  | uzid |  |-  ( j e. ZZ -> j e. ( ZZ>= ` j ) ) | 
						
							| 17 | 16 | ad2antrl |  |-  ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> j e. ( ZZ>= ` j ) ) | 
						
							| 18 | 17 | fvresd |  |-  ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> ( ( f |` ( ZZ>= ` j ) ) ` j ) = ( f ` j ) ) | 
						
							| 19 | 10 17 | ffvelcdmd |  |-  ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> ( ( f |` ( ZZ>= ` j ) ) ` j ) e. ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) | 
						
							| 20 | 18 19 | eqeltrrd |  |-  ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> ( f ` j ) e. ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) | 
						
							| 21 |  | blhalf |  |-  ( ( ( D e. ( *Met ` X ) /\ ( ( ~~>t ` J ) ` f ) e. X ) /\ ( x e. RR /\ ( f ` j ) e. ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) C_ ( ( f ` j ) ( ball ` D ) x ) ) | 
						
							| 22 | 11 13 15 20 21 | syl22anc |  |-  ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) C_ ( ( f ` j ) ( ball ` D ) x ) ) | 
						
							| 23 | 10 22 | fssd |  |-  ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` D ) x ) ) | 
						
							| 24 |  | rphalfcl |  |-  ( x e. RR+ -> ( x / 2 ) e. RR+ ) | 
						
							| 25 | 8 | simp3d |  |-  ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) -> A. y e. RR+ E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) y ) ) | 
						
							| 26 |  | oveq2 |  |-  ( y = ( x / 2 ) -> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) y ) = ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) | 
						
							| 27 | 26 | feq3d |  |-  ( y = ( x / 2 ) -> ( ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) y ) <-> ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) | 
						
							| 28 | 27 | rexbidv |  |-  ( y = ( x / 2 ) -> ( E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) y ) <-> E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) | 
						
							| 29 | 28 | rspcv |  |-  ( ( x / 2 ) e. RR+ -> ( A. y e. RR+ E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) y ) -> E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) | 
						
							| 30 | 24 25 29 | syl2im |  |-  ( x e. RR+ -> ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) -> E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) | 
						
							| 31 | 30 | impcom |  |-  ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) -> E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) | 
						
							| 32 |  | uzf |  |-  ZZ>= : ZZ --> ~P ZZ | 
						
							| 33 |  | ffn |  |-  ( ZZ>= : ZZ --> ~P ZZ -> ZZ>= Fn ZZ ) | 
						
							| 34 |  | reseq2 |  |-  ( u = ( ZZ>= ` j ) -> ( f |` u ) = ( f |` ( ZZ>= ` j ) ) ) | 
						
							| 35 |  | id |  |-  ( u = ( ZZ>= ` j ) -> u = ( ZZ>= ` j ) ) | 
						
							| 36 | 34 35 | feq12d |  |-  ( u = ( ZZ>= ` j ) -> ( ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) <-> ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) | 
						
							| 37 | 36 | rexrn |  |-  ( ZZ>= Fn ZZ -> ( E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) <-> E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) | 
						
							| 38 | 32 33 37 | mp2b |  |-  ( E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) <-> E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) | 
						
							| 39 | 31 38 | sylib |  |-  ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) -> E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) | 
						
							| 40 | 23 39 | reximddv |  |-  ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) -> E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` D ) x ) ) | 
						
							| 41 | 40 | ralrimiva |  |-  ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) -> A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` D ) x ) ) | 
						
							| 42 |  | iscau |  |-  ( D e. ( *Met ` X ) -> ( f e. ( Cau ` D ) <-> ( f e. ( X ^pm CC ) /\ A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` D ) x ) ) ) ) | 
						
							| 43 | 42 | adantr |  |-  ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) -> ( f e. ( Cau ` D ) <-> ( f e. ( X ^pm CC ) /\ A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` D ) x ) ) ) ) | 
						
							| 44 | 9 41 43 | mpbir2and |  |-  ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) -> f e. ( Cau ` D ) ) | 
						
							| 45 | 44 | ex |  |-  ( D e. ( *Met ` X ) -> ( f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) -> f e. ( Cau ` D ) ) ) | 
						
							| 46 | 5 45 | sylbid |  |-  ( D e. ( *Met ` X ) -> ( f e. dom ( ~~>t ` J ) -> f e. ( Cau ` D ) ) ) | 
						
							| 47 | 46 | ssrdv |  |-  ( D e. ( *Met ` X ) -> dom ( ~~>t ` J ) C_ ( Cau ` D ) ) |