| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmcau.1 |  | 
						
							| 2 | 1 | methaus |  | 
						
							| 3 |  | lmfun |  | 
						
							| 4 |  | funfvbrb |  | 
						
							| 5 | 2 3 4 | 3syl |  | 
						
							| 6 |  | id |  | 
						
							| 7 | 1 6 | lmmbr |  | 
						
							| 8 | 7 | biimpa |  | 
						
							| 9 | 8 | simp1d |  | 
						
							| 10 |  | simprr |  | 
						
							| 11 |  | simplll |  | 
						
							| 12 | 8 | simp2d |  | 
						
							| 13 | 12 | ad2antrr |  | 
						
							| 14 |  | rpre |  | 
						
							| 15 | 14 | ad2antlr |  | 
						
							| 16 |  | uzid |  | 
						
							| 17 | 16 | ad2antrl |  | 
						
							| 18 | 17 | fvresd |  | 
						
							| 19 | 10 17 | ffvelcdmd |  | 
						
							| 20 | 18 19 | eqeltrrd |  | 
						
							| 21 |  | blhalf |  | 
						
							| 22 | 11 13 15 20 21 | syl22anc |  | 
						
							| 23 | 10 22 | fssd |  | 
						
							| 24 |  | rphalfcl |  | 
						
							| 25 | 8 | simp3d |  | 
						
							| 26 |  | oveq2 |  | 
						
							| 27 | 26 | feq3d |  | 
						
							| 28 | 27 | rexbidv |  | 
						
							| 29 | 28 | rspcv |  | 
						
							| 30 | 24 25 29 | syl2im |  | 
						
							| 31 | 30 | impcom |  | 
						
							| 32 |  | uzf |  | 
						
							| 33 |  | ffn |  | 
						
							| 34 |  | reseq2 |  | 
						
							| 35 |  | id |  | 
						
							| 36 | 34 35 | feq12d |  | 
						
							| 37 | 36 | rexrn |  | 
						
							| 38 | 32 33 37 | mp2b |  | 
						
							| 39 | 31 38 | sylib |  | 
						
							| 40 | 23 39 | reximddv |  | 
						
							| 41 | 40 | ralrimiva |  | 
						
							| 42 |  | iscau |  | 
						
							| 43 | 42 | adantr |  | 
						
							| 44 | 9 41 43 | mpbir2and |  | 
						
							| 45 | 44 | ex |  | 
						
							| 46 | 5 45 | sylbid |  | 
						
							| 47 | 46 | ssrdv |  |