Metamath Proof Explorer


Theorem lmmbr

Description: Express the binary relation "sequence F converges to point P " in a metric space. Definition 1.4-1 of Kreyszig p. 25. The condition F C_ ( CC X. X ) allows to use objects more general than sequences when convenient; see the comment in df-lm . (Contributed by NM, 7-Dec-2006) (Revised by Mario Carneiro, 1-May-2014)

Ref Expression
Hypotheses lmmbr.2 J=MetOpenD
lmmbr.3 φD∞MetX
Assertion lmmbr φFtJPFX𝑝𝑚PXx+yranFy:yPballDx

Proof

Step Hyp Ref Expression
1 lmmbr.2 J=MetOpenD
2 lmmbr.3 φD∞MetX
3 1 mopntopon D∞MetXJTopOnX
4 2 3 syl φJTopOnX
5 4 lmbr φFtJPFX𝑝𝑚PXuJPuyranFy:yu
6 rpxr x+x*
7 1 blopn D∞MetXPXx*PballDxJ
8 6 7 syl3an3 D∞MetXPXx+PballDxJ
9 blcntr D∞MetXPXx+PPballDx
10 eleq2 u=PballDxPuPPballDx
11 feq3 u=PballDxFy:yuFy:yPballDx
12 11 rexbidv u=PballDxyranFy:yuyranFy:yPballDx
13 10 12 imbi12d u=PballDxPuyranFy:yuPPballDxyranFy:yPballDx
14 13 rspcva PballDxJuJPuyranFy:yuPPballDxyranFy:yPballDx
15 14 impancom PballDxJPPballDxuJPuyranFy:yuyranFy:yPballDx
16 8 9 15 syl2anc D∞MetXPXx+uJPuyranFy:yuyranFy:yPballDx
17 16 3expa D∞MetXPXx+uJPuyranFy:yuyranFy:yPballDx
18 17 adantlrl D∞MetXFX𝑝𝑚PXx+uJPuyranFy:yuyranFy:yPballDx
19 18 impancom D∞MetXFX𝑝𝑚PXuJPuyranFy:yux+yranFy:yPballDx
20 19 ralrimiv D∞MetXFX𝑝𝑚PXuJPuyranFy:yux+yranFy:yPballDx
21 1 mopni2 D∞MetXuJPux+PballDxu
22 r19.29 x+yranFy:yPballDxx+PballDxux+yranFy:yPballDxPballDxu
23 fss Fy:yPballDxPballDxuFy:yu
24 23 expcom PballDxuFy:yPballDxFy:yu
25 24 reximdv PballDxuyranFy:yPballDxyranFy:yu
26 25 impcom yranFy:yPballDxPballDxuyranFy:yu
27 26 rexlimivw x+yranFy:yPballDxPballDxuyranFy:yu
28 22 27 syl x+yranFy:yPballDxx+PballDxuyranFy:yu
29 21 28 sylan2 x+yranFy:yPballDxD∞MetXuJPuyranFy:yu
30 29 3exp2 x+yranFy:yPballDxD∞MetXuJPuyranFy:yu
31 30 impcom D∞MetXx+yranFy:yPballDxuJPuyranFy:yu
32 31 adantlr D∞MetXFX𝑝𝑚PXx+yranFy:yPballDxuJPuyranFy:yu
33 32 ralrimiv D∞MetXFX𝑝𝑚PXx+yranFy:yPballDxuJPuyranFy:yu
34 20 33 impbida D∞MetXFX𝑝𝑚PXuJPuyranFy:yux+yranFy:yPballDx
35 34 pm5.32da D∞MetXFX𝑝𝑚PXuJPuyranFy:yuFX𝑝𝑚PXx+yranFy:yPballDx
36 df-3an FX𝑝𝑚PXuJPuyranFy:yuFX𝑝𝑚PXuJPuyranFy:yu
37 df-3an FX𝑝𝑚PXx+yranFy:yPballDxFX𝑝𝑚PXx+yranFy:yPballDx
38 35 36 37 3bitr4g D∞MetXFX𝑝𝑚PXuJPuyranFy:yuFX𝑝𝑚PXx+yranFy:yPballDx
39 2 38 syl φFX𝑝𝑚PXuJPuyranFy:yuFX𝑝𝑚PXx+yranFy:yPballDx
40 5 39 bitrd φFtJPFX𝑝𝑚PXx+yranFy:yPballDx