Description: Express the binary relation "sequence F converges to point P " in a metric space. Definition 1.4-1 of Kreyszig p. 25. The condition F C_ ( CC X. X ) allows to use objects more general than sequences when convenient; see the comment in df-lm . (Contributed by NM, 7-Dec-2006) (Revised by Mario Carneiro, 1-May-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmmbr.2 | |
|
lmmbr.3 | |
||
Assertion | lmmbr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmmbr.2 | |
|
2 | lmmbr.3 | |
|
3 | 1 | mopntopon | |
4 | 2 3 | syl | |
5 | 4 | lmbr | |
6 | rpxr | |
|
7 | 1 | blopn | |
8 | 6 7 | syl3an3 | |
9 | blcntr | |
|
10 | eleq2 | |
|
11 | feq3 | |
|
12 | 11 | rexbidv | |
13 | 10 12 | imbi12d | |
14 | 13 | rspcva | |
15 | 14 | impancom | |
16 | 8 9 15 | syl2anc | |
17 | 16 | 3expa | |
18 | 17 | adantlrl | |
19 | 18 | impancom | |
20 | 19 | ralrimiv | |
21 | 1 | mopni2 | |
22 | r19.29 | |
|
23 | fss | |
|
24 | 23 | expcom | |
25 | 24 | reximdv | |
26 | 25 | impcom | |
27 | 26 | rexlimivw | |
28 | 22 27 | syl | |
29 | 21 28 | sylan2 | |
30 | 29 | 3exp2 | |
31 | 30 | impcom | |
32 | 31 | adantlr | |
33 | 32 | ralrimiv | |
34 | 20 33 | impbida | |
35 | 34 | pm5.32da | |
36 | df-3an | |
|
37 | df-3an | |
|
38 | 35 36 37 | 3bitr4g | |
39 | 2 38 | syl | |
40 | 5 39 | bitrd | |