Metamath Proof Explorer


Theorem lmbr

Description: Express the binary relation "sequence F converges to point P " in a topological space. Definition 1.4-1 of Kreyszig p. 25. The condition F C_ ( CC X. X ) allows to use objects more general than sequences when convenient; see the comment in df-lm . (Contributed by Mario Carneiro, 14-Nov-2013)

Ref Expression
Hypothesis lmbr.2 φJTopOnX
Assertion lmbr φFtJPFX𝑝𝑚PXuJPuyranFy:yu

Proof

Step Hyp Ref Expression
1 lmbr.2 φJTopOnX
2 lmfval JTopOnXtJ=fx|fX𝑝𝑚xXuJxuyranfy:yu
3 1 2 syl φtJ=fx|fX𝑝𝑚xXuJxuyranfy:yu
4 3 breqd φFtJPFfx|fX𝑝𝑚xXuJxuyranfy:yuP
5 reseq1 f=Ffy=Fy
6 5 feq1d f=Ffy:yuFy:yu
7 6 rexbidv f=Fyranfy:yuyranFy:yu
8 7 imbi2d f=Fxuyranfy:yuxuyranFy:yu
9 8 ralbidv f=FuJxuyranfy:yuuJxuyranFy:yu
10 eleq1 x=PxuPu
11 10 imbi1d x=PxuyranFy:yuPuyranFy:yu
12 11 ralbidv x=PuJxuyranFy:yuuJPuyranFy:yu
13 9 12 sylan9bb f=Fx=PuJxuyranfy:yuuJPuyranFy:yu
14 df-3an fX𝑝𝑚xXuJxuyranfy:yufX𝑝𝑚xXuJxuyranfy:yu
15 14 opabbii fx|fX𝑝𝑚xXuJxuyranfy:yu=fx|fX𝑝𝑚xXuJxuyranfy:yu
16 13 15 brab2a Ffx|fX𝑝𝑚xXuJxuyranfy:yuPFX𝑝𝑚PXuJPuyranFy:yu
17 df-3an FX𝑝𝑚PXuJPuyranFy:yuFX𝑝𝑚PXuJPuyranFy:yu
18 16 17 bitr4i Ffx|fX𝑝𝑚xXuJxuyranfy:yuPFX𝑝𝑚PXuJPuyranFy:yu
19 4 18 bitrdi φFtJPFX𝑝𝑚PXuJPuyranFy:yu