| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chintcl.1 |
|- ( A C_ CH /\ A =/= (/) ) |
| 2 |
1
|
simpli |
|- A C_ CH |
| 3 |
|
chsssh |
|- CH C_ SH |
| 4 |
2 3
|
sstri |
|- A C_ SH |
| 5 |
1
|
simpri |
|- A =/= (/) |
| 6 |
4 5
|
pm3.2i |
|- ( A C_ SH /\ A =/= (/) ) |
| 7 |
6
|
shintcli |
|- |^| A e. SH |
| 8 |
2
|
sseli |
|- ( y e. A -> y e. CH ) |
| 9 |
|
vex |
|- x e. _V |
| 10 |
9
|
chlimi |
|- ( ( y e. CH /\ f : NN --> y /\ f ~~>v x ) -> x e. y ) |
| 11 |
10
|
3exp |
|- ( y e. CH -> ( f : NN --> y -> ( f ~~>v x -> x e. y ) ) ) |
| 12 |
11
|
com3r |
|- ( f ~~>v x -> ( y e. CH -> ( f : NN --> y -> x e. y ) ) ) |
| 13 |
8 12
|
syl5 |
|- ( f ~~>v x -> ( y e. A -> ( f : NN --> y -> x e. y ) ) ) |
| 14 |
13
|
imp |
|- ( ( f ~~>v x /\ y e. A ) -> ( f : NN --> y -> x e. y ) ) |
| 15 |
14
|
ralimdva |
|- ( f ~~>v x -> ( A. y e. A f : NN --> y -> A. y e. A x e. y ) ) |
| 16 |
5
|
fint |
|- ( f : NN --> |^| A <-> A. y e. A f : NN --> y ) |
| 17 |
9
|
elint2 |
|- ( x e. |^| A <-> A. y e. A x e. y ) |
| 18 |
15 16 17
|
3imtr4g |
|- ( f ~~>v x -> ( f : NN --> |^| A -> x e. |^| A ) ) |
| 19 |
18
|
impcom |
|- ( ( f : NN --> |^| A /\ f ~~>v x ) -> x e. |^| A ) |
| 20 |
19
|
gen2 |
|- A. f A. x ( ( f : NN --> |^| A /\ f ~~>v x ) -> x e. |^| A ) |
| 21 |
|
isch2 |
|- ( |^| A e. CH <-> ( |^| A e. SH /\ A. f A. x ( ( f : NN --> |^| A /\ f ~~>v x ) -> x e. |^| A ) ) ) |
| 22 |
7 20 21
|
mpbir2an |
|- |^| A e. CH |