Step |
Hyp |
Ref |
Expression |
1 |
|
chintcl.1 |
|- ( A C_ CH /\ A =/= (/) ) |
2 |
1
|
simpli |
|- A C_ CH |
3 |
|
chsssh |
|- CH C_ SH |
4 |
2 3
|
sstri |
|- A C_ SH |
5 |
1
|
simpri |
|- A =/= (/) |
6 |
4 5
|
pm3.2i |
|- ( A C_ SH /\ A =/= (/) ) |
7 |
6
|
shintcli |
|- |^| A e. SH |
8 |
2
|
sseli |
|- ( y e. A -> y e. CH ) |
9 |
|
vex |
|- x e. _V |
10 |
9
|
chlimi |
|- ( ( y e. CH /\ f : NN --> y /\ f ~~>v x ) -> x e. y ) |
11 |
10
|
3exp |
|- ( y e. CH -> ( f : NN --> y -> ( f ~~>v x -> x e. y ) ) ) |
12 |
11
|
com3r |
|- ( f ~~>v x -> ( y e. CH -> ( f : NN --> y -> x e. y ) ) ) |
13 |
8 12
|
syl5 |
|- ( f ~~>v x -> ( y e. A -> ( f : NN --> y -> x e. y ) ) ) |
14 |
13
|
imp |
|- ( ( f ~~>v x /\ y e. A ) -> ( f : NN --> y -> x e. y ) ) |
15 |
14
|
ralimdva |
|- ( f ~~>v x -> ( A. y e. A f : NN --> y -> A. y e. A x e. y ) ) |
16 |
5
|
fint |
|- ( f : NN --> |^| A <-> A. y e. A f : NN --> y ) |
17 |
9
|
elint2 |
|- ( x e. |^| A <-> A. y e. A x e. y ) |
18 |
15 16 17
|
3imtr4g |
|- ( f ~~>v x -> ( f : NN --> |^| A -> x e. |^| A ) ) |
19 |
18
|
impcom |
|- ( ( f : NN --> |^| A /\ f ~~>v x ) -> x e. |^| A ) |
20 |
19
|
gen2 |
|- A. f A. x ( ( f : NN --> |^| A /\ f ~~>v x ) -> x e. |^| A ) |
21 |
|
isch2 |
|- ( |^| A e. CH <-> ( |^| A e. SH /\ A. f A. x ( ( f : NN --> |^| A /\ f ~~>v x ) -> x e. |^| A ) ) ) |
22 |
7 20 21
|
mpbir2an |
|- |^| A e. CH |