Metamath Proof Explorer


Theorem chintcli

Description: The intersection of a nonempty set of closed subspaces is a closed subspace. (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypothesis chintcl.1 ACA
Assertion chintcli AC

Proof

Step Hyp Ref Expression
1 chintcl.1 ACA
2 1 simpli AC
3 chsssh CS
4 2 3 sstri AS
5 1 simpri A
6 4 5 pm3.2i ASA
7 6 shintcli AS
8 2 sseli yAyC
9 vex xV
10 9 chlimi yCf:yfvxxy
11 10 3exp yCf:yfvxxy
12 11 com3r fvxyCf:yxy
13 8 12 syl5 fvxyAf:yxy
14 13 imp fvxyAf:yxy
15 14 ralimdva fvxyAf:yyAxy
16 5 fint f:AyAf:y
17 9 elint2 xAyAxy
18 15 16 17 3imtr4g fvxf:AxA
19 18 impcom f:AfvxxA
20 19 gen2 fxf:AfvxxA
21 isch2 ACASfxf:AfvxxA
22 7 20 21 mpbir2an AC