Metamath Proof Explorer


Theorem chlimi

Description: The limit property of a closed subspace of a Hilbert space. (Contributed by NM, 14-Sep-1999) (New usage is discouraged.)

Ref Expression
Hypothesis chlim.1 AV
Assertion chlimi HCF:HFvAAH

Proof

Step Hyp Ref Expression
1 chlim.1 AV
2 isch2 HCHSfxf:HfvxxH
3 2 simprbi HCfxf:HfvxxH
4 nnex V
5 fex F:HVFV
6 4 5 mpan2 F:HFV
7 6 adantr F:HFvAFV
8 feq1 f=Ff:HF:H
9 breq1 f=FfvxFvx
10 8 9 anbi12d f=Ff:HfvxF:HFvx
11 10 imbi1d f=Ff:HfvxxHF:HFvxxH
12 11 albidv f=Fxf:HfvxxHxF:HFvxxH
13 12 spcgv FVfxf:HfvxxHxF:HFvxxH
14 breq2 x=AFvxFvA
15 14 anbi2d x=AF:HFvxF:HFvA
16 eleq1 x=AxHAH
17 15 16 imbi12d x=AF:HFvxxHF:HFvAAH
18 1 17 spcv xF:HFvxxHF:HFvAAH
19 13 18 syl6 FVfxf:HfvxxHF:HFvAAH
20 7 19 syl F:HFvAfxf:HfvxxHF:HFvAAH
21 20 pm2.43b fxf:HfvxxHF:HFvAAH
22 3 21 syl HCF:HFvAAH
23 22 3impib HCF:HFvAAH