Metamath Proof Explorer


Theorem hlim0

Description: The zero sequence in Hilbert space converges to the zero vector. (Contributed by NM, 17-Aug-1999) (Proof shortened by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Assertion hlim0 ×0v0

Proof

Step Hyp Ref Expression
1 ax-hv0cl 0
2 1 fconst6 ×0:
3 ax-hilex V
4 nnex V
5 3 4 elmap ×0×0:
6 2 5 mpbir ×0
7 eqid +norm=+norm
8 eqid IndMet+norm=IndMet+norm
9 7 8 hhxmet IndMet+norm∞Met
10 eqid MetOpenIndMet+norm=MetOpenIndMet+norm
11 10 mopntopon IndMet+norm∞MetMetOpenIndMet+normTopOn
12 9 11 ax-mp MetOpenIndMet+normTopOn
13 1z 1
14 nnuz =1
15 14 lmconst MetOpenIndMet+normTopOn01×0tMetOpenIndMet+norm0
16 12 1 13 15 mp3an ×0tMetOpenIndMet+norm0
17 7 8 10 hhlm v=tMetOpenIndMet+norm
18 17 breqi ×0v0×0tMetOpenIndMet+norm0
19 1 elexi 0V
20 19 brresi ×0tMetOpenIndMet+norm0×0×0tMetOpenIndMet+norm0
21 18 20 bitri ×0v0×0×0tMetOpenIndMet+norm0
22 6 16 21 mpbir2an ×0v0