Metamath Proof Explorer


Theorem chintcl

Description: The intersection (infimum) of a nonempty subset of CH belongs to CH . Part of Theorem 3.13 of Beran p. 108. Also part of Definition 3.4-1 in MegPav2000 p. 2345 (PDF p. 8). (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion chintcl ACAAC

Proof

Step Hyp Ref Expression
1 inteq A=ifACAACA=ifACAAC
2 1 eleq1d A=ifACAACACifACAACC
3 sseq1 A=ifACAACACifACAACC
4 neeq1 A=ifACAACAifACAAC
5 3 4 anbi12d A=ifACAACACAifACAACCifACAAC
6 sseq1 C=ifACAACCCifACAACC
7 neeq1 C=ifACAACCifACAAC
8 6 7 anbi12d C=ifACAACCCCifACAACCifACAAC
9 ssid CC
10 h0elch 0C
11 10 ne0ii C
12 9 11 pm3.2i CCC
13 5 8 12 elimhyp ifACAACCifACAAC
14 13 chintcli ifACAACC
15 2 14 dedth ACAAC