Step |
Hyp |
Ref |
Expression |
1 |
|
atom1d |
|- ( B e. HAtoms <-> E. x e. ~H ( x =/= 0h /\ B = ( span ` { x } ) ) ) |
2 |
|
spansnj |
|- ( ( A e. CH /\ x e. ~H ) -> ( A +H ( span ` { x } ) ) = ( A vH ( span ` { x } ) ) ) |
3 |
|
oveq2 |
|- ( B = ( span ` { x } ) -> ( A +H B ) = ( A +H ( span ` { x } ) ) ) |
4 |
|
oveq2 |
|- ( B = ( span ` { x } ) -> ( A vH B ) = ( A vH ( span ` { x } ) ) ) |
5 |
3 4
|
eqeq12d |
|- ( B = ( span ` { x } ) -> ( ( A +H B ) = ( A vH B ) <-> ( A +H ( span ` { x } ) ) = ( A vH ( span ` { x } ) ) ) ) |
6 |
2 5
|
syl5ibr |
|- ( B = ( span ` { x } ) -> ( ( A e. CH /\ x e. ~H ) -> ( A +H B ) = ( A vH B ) ) ) |
7 |
6
|
expd |
|- ( B = ( span ` { x } ) -> ( A e. CH -> ( x e. ~H -> ( A +H B ) = ( A vH B ) ) ) ) |
8 |
7
|
adantl |
|- ( ( x =/= 0h /\ B = ( span ` { x } ) ) -> ( A e. CH -> ( x e. ~H -> ( A +H B ) = ( A vH B ) ) ) ) |
9 |
8
|
com3l |
|- ( A e. CH -> ( x e. ~H -> ( ( x =/= 0h /\ B = ( span ` { x } ) ) -> ( A +H B ) = ( A vH B ) ) ) ) |
10 |
9
|
rexlimdv |
|- ( A e. CH -> ( E. x e. ~H ( x =/= 0h /\ B = ( span ` { x } ) ) -> ( A +H B ) = ( A vH B ) ) ) |
11 |
1 10
|
syl5bi |
|- ( A e. CH -> ( B e. HAtoms -> ( A +H B ) = ( A vH B ) ) ) |
12 |
11
|
imp |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( A +H B ) = ( A vH B ) ) |