| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ss |
|- (/) C_ { 0H } |
| 2 |
|
0ss |
|- (/) C_ CH |
| 3 |
|
h0elch |
|- 0H e. CH |
| 4 |
|
snssi |
|- ( 0H e. CH -> { 0H } C_ CH ) |
| 5 |
3 4
|
ax-mp |
|- { 0H } C_ CH |
| 6 |
|
chsupss |
|- ( ( (/) C_ CH /\ { 0H } C_ CH ) -> ( (/) C_ { 0H } -> ( \/H ` (/) ) C_ ( \/H ` { 0H } ) ) ) |
| 7 |
2 5 6
|
mp2an |
|- ( (/) C_ { 0H } -> ( \/H ` (/) ) C_ ( \/H ` { 0H } ) ) |
| 8 |
1 7
|
ax-mp |
|- ( \/H ` (/) ) C_ ( \/H ` { 0H } ) |
| 9 |
|
chsupsn |
|- ( 0H e. CH -> ( \/H ` { 0H } ) = 0H ) |
| 10 |
3 9
|
ax-mp |
|- ( \/H ` { 0H } ) = 0H |
| 11 |
8 10
|
sseqtri |
|- ( \/H ` (/) ) C_ 0H |
| 12 |
|
chsupcl |
|- ( (/) C_ CH -> ( \/H ` (/) ) e. CH ) |
| 13 |
2 12
|
ax-mp |
|- ( \/H ` (/) ) e. CH |
| 14 |
13
|
chle0i |
|- ( ( \/H ` (/) ) C_ 0H <-> ( \/H ` (/) ) = 0H ) |
| 15 |
11 14
|
mpbi |
|- ( \/H ` (/) ) = 0H |