| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ss |
⊢ ∅ ⊆ { 0ℋ } |
| 2 |
|
0ss |
⊢ ∅ ⊆ Cℋ |
| 3 |
|
h0elch |
⊢ 0ℋ ∈ Cℋ |
| 4 |
|
snssi |
⊢ ( 0ℋ ∈ Cℋ → { 0ℋ } ⊆ Cℋ ) |
| 5 |
3 4
|
ax-mp |
⊢ { 0ℋ } ⊆ Cℋ |
| 6 |
|
chsupss |
⊢ ( ( ∅ ⊆ Cℋ ∧ { 0ℋ } ⊆ Cℋ ) → ( ∅ ⊆ { 0ℋ } → ( ∨ℋ ‘ ∅ ) ⊆ ( ∨ℋ ‘ { 0ℋ } ) ) ) |
| 7 |
2 5 6
|
mp2an |
⊢ ( ∅ ⊆ { 0ℋ } → ( ∨ℋ ‘ ∅ ) ⊆ ( ∨ℋ ‘ { 0ℋ } ) ) |
| 8 |
1 7
|
ax-mp |
⊢ ( ∨ℋ ‘ ∅ ) ⊆ ( ∨ℋ ‘ { 0ℋ } ) |
| 9 |
|
chsupsn |
⊢ ( 0ℋ ∈ Cℋ → ( ∨ℋ ‘ { 0ℋ } ) = 0ℋ ) |
| 10 |
3 9
|
ax-mp |
⊢ ( ∨ℋ ‘ { 0ℋ } ) = 0ℋ |
| 11 |
8 10
|
sseqtri |
⊢ ( ∨ℋ ‘ ∅ ) ⊆ 0ℋ |
| 12 |
|
chsupcl |
⊢ ( ∅ ⊆ Cℋ → ( ∨ℋ ‘ ∅ ) ∈ Cℋ ) |
| 13 |
2 12
|
ax-mp |
⊢ ( ∨ℋ ‘ ∅ ) ∈ Cℋ |
| 14 |
13
|
chle0i |
⊢ ( ( ∨ℋ ‘ ∅ ) ⊆ 0ℋ ↔ ( ∨ℋ ‘ ∅ ) = 0ℋ ) |
| 15 |
11 14
|
mpbi |
⊢ ( ∨ℋ ‘ ∅ ) = 0ℋ |