Metamath Proof Explorer


Theorem chsup0

Description: The supremum of the empty set. (Contributed by NM, 13-Aug-2002) (New usage is discouraged.)

Ref Expression
Assertion chsup0 =0

Proof

Step Hyp Ref Expression
1 0ss 0
2 0ss C
3 h0elch 0C
4 snssi 0C0C
5 3 4 ax-mp 0C
6 chsupss C0C00
7 2 5 6 mp2an 00
8 1 7 ax-mp 0
9 chsupsn 0C0=0
10 3 9 ax-mp 0=0
11 8 10 sseqtri 0
12 chsupcl CC
13 2 12 ax-mp C
14 13 chle0i 0=0
15 11 14 mpbi =0