Metamath Proof Explorer


Theorem chtleppi

Description: Upper bound on the theta function. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion chtleppi
|- ( A e. RR+ -> ( theta ` A ) <_ ( ( ppi ` A ) x. ( log ` A ) ) )

Proof

Step Hyp Ref Expression
1 rpre
 |-  ( A e. RR+ -> A e. RR )
2 ppifi
 |-  ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) e. Fin )
3 1 2 syl
 |-  ( A e. RR+ -> ( ( 0 [,] A ) i^i Prime ) e. Fin )
4 simpr
 |-  ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. ( ( 0 [,] A ) i^i Prime ) )
5 4 elin2d
 |-  ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. Prime )
6 prmnn
 |-  ( p e. Prime -> p e. NN )
7 5 6 syl
 |-  ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. NN )
8 7 nnrpd
 |-  ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. RR+ )
9 8 relogcld
 |-  ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( log ` p ) e. RR )
10 relogcl
 |-  ( A e. RR+ -> ( log ` A ) e. RR )
11 10 adantr
 |-  ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( log ` A ) e. RR )
12 4 elin1d
 |-  ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. ( 0 [,] A ) )
13 0re
 |-  0 e. RR
14 elicc2
 |-  ( ( 0 e. RR /\ A e. RR ) -> ( p e. ( 0 [,] A ) <-> ( p e. RR /\ 0 <_ p /\ p <_ A ) ) )
15 13 1 14 sylancr
 |-  ( A e. RR+ -> ( p e. ( 0 [,] A ) <-> ( p e. RR /\ 0 <_ p /\ p <_ A ) ) )
16 15 biimpa
 |-  ( ( A e. RR+ /\ p e. ( 0 [,] A ) ) -> ( p e. RR /\ 0 <_ p /\ p <_ A ) )
17 12 16 syldan
 |-  ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( p e. RR /\ 0 <_ p /\ p <_ A ) )
18 17 simp3d
 |-  ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p <_ A )
19 8 reeflogd
 |-  ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( exp ` ( log ` p ) ) = p )
20 reeflog
 |-  ( A e. RR+ -> ( exp ` ( log ` A ) ) = A )
21 20 adantr
 |-  ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( exp ` ( log ` A ) ) = A )
22 18 19 21 3brtr4d
 |-  ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( exp ` ( log ` p ) ) <_ ( exp ` ( log ` A ) ) )
23 efle
 |-  ( ( ( log ` p ) e. RR /\ ( log ` A ) e. RR ) -> ( ( log ` p ) <_ ( log ` A ) <-> ( exp ` ( log ` p ) ) <_ ( exp ` ( log ` A ) ) ) )
24 9 11 23 syl2anc
 |-  ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( log ` p ) <_ ( log ` A ) <-> ( exp ` ( log ` p ) ) <_ ( exp ` ( log ` A ) ) ) )
25 22 24 mpbird
 |-  ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( log ` p ) <_ ( log ` A ) )
26 3 9 11 25 fsumle
 |-  ( A e. RR+ -> sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) <_ sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` A ) )
27 chtval
 |-  ( A e. RR -> ( theta ` A ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) )
28 1 27 syl
 |-  ( A e. RR+ -> ( theta ` A ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) )
29 ppival
 |-  ( A e. RR -> ( ppi ` A ) = ( # ` ( ( 0 [,] A ) i^i Prime ) ) )
30 1 29 syl
 |-  ( A e. RR+ -> ( ppi ` A ) = ( # ` ( ( 0 [,] A ) i^i Prime ) ) )
31 30 oveq1d
 |-  ( A e. RR+ -> ( ( ppi ` A ) x. ( log ` A ) ) = ( ( # ` ( ( 0 [,] A ) i^i Prime ) ) x. ( log ` A ) ) )
32 10 recnd
 |-  ( A e. RR+ -> ( log ` A ) e. CC )
33 fsumconst
 |-  ( ( ( ( 0 [,] A ) i^i Prime ) e. Fin /\ ( log ` A ) e. CC ) -> sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` A ) = ( ( # ` ( ( 0 [,] A ) i^i Prime ) ) x. ( log ` A ) ) )
34 3 32 33 syl2anc
 |-  ( A e. RR+ -> sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` A ) = ( ( # ` ( ( 0 [,] A ) i^i Prime ) ) x. ( log ` A ) ) )
35 31 34 eqtr4d
 |-  ( A e. RR+ -> ( ( ppi ` A ) x. ( log ` A ) ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` A ) )
36 26 28 35 3brtr4d
 |-  ( A e. RR+ -> ( theta ` A ) <_ ( ( ppi ` A ) x. ( log ` A ) ) )