Step |
Hyp |
Ref |
Expression |
1 |
|
rpre |
|- ( A e. RR+ -> A e. RR ) |
2 |
|
ppifi |
|- ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) e. Fin ) |
3 |
1 2
|
syl |
|- ( A e. RR+ -> ( ( 0 [,] A ) i^i Prime ) e. Fin ) |
4 |
|
simpr |
|- ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. ( ( 0 [,] A ) i^i Prime ) ) |
5 |
4
|
elin2d |
|- ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. Prime ) |
6 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
7 |
5 6
|
syl |
|- ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. NN ) |
8 |
7
|
nnrpd |
|- ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. RR+ ) |
9 |
8
|
relogcld |
|- ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( log ` p ) e. RR ) |
10 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
11 |
10
|
adantr |
|- ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( log ` A ) e. RR ) |
12 |
4
|
elin1d |
|- ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. ( 0 [,] A ) ) |
13 |
|
0re |
|- 0 e. RR |
14 |
|
elicc2 |
|- ( ( 0 e. RR /\ A e. RR ) -> ( p e. ( 0 [,] A ) <-> ( p e. RR /\ 0 <_ p /\ p <_ A ) ) ) |
15 |
13 1 14
|
sylancr |
|- ( A e. RR+ -> ( p e. ( 0 [,] A ) <-> ( p e. RR /\ 0 <_ p /\ p <_ A ) ) ) |
16 |
15
|
biimpa |
|- ( ( A e. RR+ /\ p e. ( 0 [,] A ) ) -> ( p e. RR /\ 0 <_ p /\ p <_ A ) ) |
17 |
12 16
|
syldan |
|- ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( p e. RR /\ 0 <_ p /\ p <_ A ) ) |
18 |
17
|
simp3d |
|- ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p <_ A ) |
19 |
8
|
reeflogd |
|- ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( exp ` ( log ` p ) ) = p ) |
20 |
|
reeflog |
|- ( A e. RR+ -> ( exp ` ( log ` A ) ) = A ) |
21 |
20
|
adantr |
|- ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( exp ` ( log ` A ) ) = A ) |
22 |
18 19 21
|
3brtr4d |
|- ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( exp ` ( log ` p ) ) <_ ( exp ` ( log ` A ) ) ) |
23 |
|
efle |
|- ( ( ( log ` p ) e. RR /\ ( log ` A ) e. RR ) -> ( ( log ` p ) <_ ( log ` A ) <-> ( exp ` ( log ` p ) ) <_ ( exp ` ( log ` A ) ) ) ) |
24 |
9 11 23
|
syl2anc |
|- ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( log ` p ) <_ ( log ` A ) <-> ( exp ` ( log ` p ) ) <_ ( exp ` ( log ` A ) ) ) ) |
25 |
22 24
|
mpbird |
|- ( ( A e. RR+ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( log ` p ) <_ ( log ` A ) ) |
26 |
3 9 11 25
|
fsumle |
|- ( A e. RR+ -> sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) <_ sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` A ) ) |
27 |
|
chtval |
|- ( A e. RR -> ( theta ` A ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) ) |
28 |
1 27
|
syl |
|- ( A e. RR+ -> ( theta ` A ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) ) |
29 |
|
ppival |
|- ( A e. RR -> ( ppi ` A ) = ( # ` ( ( 0 [,] A ) i^i Prime ) ) ) |
30 |
1 29
|
syl |
|- ( A e. RR+ -> ( ppi ` A ) = ( # ` ( ( 0 [,] A ) i^i Prime ) ) ) |
31 |
30
|
oveq1d |
|- ( A e. RR+ -> ( ( ppi ` A ) x. ( log ` A ) ) = ( ( # ` ( ( 0 [,] A ) i^i Prime ) ) x. ( log ` A ) ) ) |
32 |
10
|
recnd |
|- ( A e. RR+ -> ( log ` A ) e. CC ) |
33 |
|
fsumconst |
|- ( ( ( ( 0 [,] A ) i^i Prime ) e. Fin /\ ( log ` A ) e. CC ) -> sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` A ) = ( ( # ` ( ( 0 [,] A ) i^i Prime ) ) x. ( log ` A ) ) ) |
34 |
3 32 33
|
syl2anc |
|- ( A e. RR+ -> sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` A ) = ( ( # ` ( ( 0 [,] A ) i^i Prime ) ) x. ( log ` A ) ) ) |
35 |
31 34
|
eqtr4d |
|- ( A e. RR+ -> ( ( ppi ` A ) x. ( log ` A ) ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` A ) ) |
36 |
26 28 35
|
3brtr4d |
|- ( A e. RR+ -> ( theta ` A ) <_ ( ( ppi ` A ) x. ( log ` A ) ) ) |